AC Drives Regenerative Energy Solutions

Product Summary

Regenerative Energy Solutions

- Snubber Resistor Braking Kits
- Line Regeneration Controls
- Synchronous Rectifier Controls

AC Drives and Regenerative Energy

When the rotating element of an AC motor turns faster than the AC drive's speed command, the motor begins to act as a generator and pumps (regenerates) energy back into the DC hus of the drive. If the drive cannot absorb this excess energy, the DC hus voltage will continue to climb until the drive trips on a high bus fault. These regenerative conditions can occur when:

- quickly decelerating a high inertia load (flywheel, mechanical arm)
- controlling the speed of a load moving vertically downward (hoist, declining conveyor)
- a sudden drop in load torque occurs (machining/drilling operation or an industrial saw)
- the process requires repetitive acceleration and deceleration to a stop (indexing).
- controlling the speed (tension control) of an unwind application

Regenerative Energy Solutions

A 460 VAC drive operating or, 460 VAC line power will have a nominal DC bus voltage of 650 VDC (325 VDC for a 230 VAC drive). When the DC bus exceeds 800 VDC (400 VDC for a 230 VAC drive) the drive will trip.

There are three rechnologies available to prevent the AC drive from reaching the trip level. Each technology has its own advantages and disadvantages. The three rechnologies are Snubber Resistor Braking, Line Regeneration Control, and Synchronous Rectifier Control.

Snubber Resistor Braking kits use a transistor and circuitry that "turns on" at a predetermined DC bus voltage, which is set below the AC drive's trip point.

At this voltage level the energy is transferred to a resistor (or group of resistors) where the energy is burned off as heat. Some AC drives already include a built-in braking transistor (such as the GV3ROWSE Bookshelf drive) and only require the addition of a resistor kit. Snubber resistor braking kits are a lower cost solution compared to line regeneration controls or synchronous rectifier controls. Snubber braking resistors, however, require exol down time, which make them less suitable for highly cyclical operations such as frequent, repetitive starts and stops. Line regeneration controls or synchronous rectifier controls are more suitable for these applications.

Line Regeneration Controls use a set of transistors, which pulse "or." at a predetermined DC hus voltage set below the AC drive's trip point. At this voltage level the energy is transferred directly back to the AC power source. Line regeneration controls can operate in a continuous mode up to the transistor current rating. Their ability to regenerate power back to the power source also makes them an energy saving device. Over time this energy savings can offset the higher cost of these controls.

Synchronous Rectifier Controls can be used either as line regeneration controls or as AC line voltage to DC voltage converters for powering the DC hus of an AC drive.

In line regeneration control, the synchronous rectifier and the AC drive both receive their input power from the AC line. The AC drive's DC bus terminals are also connected to the DC terminals of the synchronous rectifier. Under regenerative conditions the synchronous rectifier channels the excess DC bus voltage, based on a preser level, back to the AC power line.

In synchronous rectifier control, the AC drive (or a group of AC drives) is connected directly to the DC output of the synchronous rectifier control via the drive DC bus terminals, thus bypassing the AC line and the AC drive's diode bridge front end. With multiple AC drives connected via a "common bus" to the synchronous rectifier, regenerative energy is shared between the motoring and regenerating drives, thus saving power.

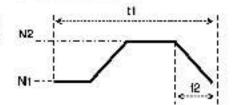
When Is External Braking Required?

Not every regenerative situation will require external braking hardware. If the regenerative energy is small enough to be readily absorbed by the DC bus of the drive, then an external brake will not be necessary. A combination of extended deceleration time, reduced change in speed and mechanical system friction will assist in absorbing the excess energy.

A drive operating on 460 VAC power will have a nominal bus voltage of 650 VDC (325 VDC for 230 VAC drives). 460 VAC drives are typically designed to operate with DC bus voltage levels up to 800 VDC (400 VDC for 230 VAC drives) before tripping. The regenerative energy may be small enough for the DC bus to remain under 800 VDC.

Typically, if the regenerative horsepower is 10% or less than the drive horsepower rating, external braking hardware will not be required.

Calculating the Regenerative Energy


Determine the speed/cycle profile of the application:

N1 = minimum speed

N2 = maximum speed

t1 = total evele time

t2 = deceleration time

2) Calculate or obtain the system inertia data:

$$WK^2s = WK^2m + (WK^2L / GR^2)$$

Where:

WK2s = rotal system inertia

WK*m = motor rotor inertia

WK3L = driven loac inertia

GR1 = gear ratio (defined as motor revolutions/driver, load revolutions)

 Calculate the regeneration or braking torque required to decelerate the load.

$$T_{p} = T_{decol} - T_{p}$$

$$T_n = WK_2 * (N2 - N1) - T_i$$

308 * 12

Where:

 T_{γ} = braking torque in ft lbs.

T. = friction rougue

Calculate the braking HP required at rop speed;

$$IIP_{mpa} = T_{g} \circ N2$$

$$5250$$

5) The value of HP_{con} can now be compared to the drive rating to determine if external braking hardware is needed. If (HP_{con} / HP_{driv}) * 100 > 10%, external braking hardware is recommended.

Sizing External Braking Hardware

If the results of step 5 indicate the need for external braking hardware, the following additional steps will assist in properly sizing an external brake unit. To determine if the brake unit meets the application's needs, three items must be determined; average power generation, peak power, and peak regeneration current.

 Average power generation is calculated as follows, assuming the deceleration rate is linear;

$$HP_{egh} = (T_R + (N2+N1)/2 * r1) 5250 * r2$$

Convert the regeneration HP in watts (Average Power).

Watts_{easer} =
$$IIP_{reco} + 746$$

8) Peak regeneration warrs can be obtained by using the HP_{train} calculated in step 4 and converting to warrs. This peak regeneration (watts) energy must be less than the peak wattrating of the braking unit.

Determining the Duty Cycle

9) The braking dury cycle (percentage of time during an operating cycle when braking occurs), must be determined. A typical operating cycle consists of an acceleration mode, a running at set speed mode, a deceleration mode and finally a rest or zero speed mode. Braking occurs during the deceleration mode.

A lower dury cycle percentage will allow more time for resistor cool-down. This will affect resistor sizing and selection. A dury cycle of 50% or less makes snubber brake control a good solution. For dury cycles near or at 100%, line regeneration control is more suitable.

Calculating the Regenerative Current

III) The regenerative current must be compared to the current rating of the braking unit. The regenerative current must not exceed the rated amps of the braking unit. Using the braking HP from step 4, the following rule-of- thumb formulas can be used to calculate the regenerative current:

460 V Drives
$$I_{max} = 1.2 \degree HP_{max}$$

Snubber Braking Kits - Description and Selection Information

Strubber brakes consist of two components—braking transistor circuitry and a resistor or set of resistors. Some AC drives are manufactured with built in strubber transistor circuitry such as the GV3000/SE Bookshelf drive. These drives only require the addition of a properly sized resistor (refer to tables 5 and 6 for resistor kits and sizing information). For drives requiring an external braking transistor, refer to table 1 for complete snubber braking kits or tables 2 through 5 for separate snubber transistor and resistor kits.

Complete Snubber Resistor Braking Units

Contains both a Snubber Transister and Snubber Resister

- For 20 50% Duty Cycles
- NEMA I Enclosed
- 230 V. 460 V. 575 V.

Specifications

Rated Voltage: 3-phase, +10%, -20%

Heitz, 50 60 Hz

· Input Current: Rated DC current

 Connections: Drive DC bus, ground, input AC line (single phase, rated voltage =10%, 20%, 50 60 Hz)

 Adjustments: None, automatic voltage level

· Current Limit: To rated DC current

Maximur, On time, 60 seconés.

Operating Temperature: 0-50-C.

Huntidity: Below 90%, non-condensing

· Atmosphere: Free of corrosive gas or dust

 Panel Indicators: DC bus lamp, control power lamp, active braking lamp

V • Convecti

Table 1 Complete Snubber Brake Kits Selection Table

Drive	Snutber Brake	Resistance	Corrt, Watt	Instant, Watt	Continuous	100	Xineusions (in:	
Rating	KHIWA	Value	Dissipation	Desipation	Buby Cycle	н		D
1 (1,23) •	a\$:20100	30	310	4000	20%	16.2	8.25	65
	25-20400	20	400	4000	30%	10.2	0.20	0.9
2 P.200 *	78720500	20	600	6000	30%	18.2	8.25	8.5
	25 20100	30	100	1000	20%	102	0.25	65
8 HP. 280 V	25720800	20	600	€000	30%	18.2	8.25	8.9
	18321101	10	1200	12000	50%	18.2	8.25	8.5
	25720500	20	600	€000	20%	18.2	0.25	0.0
5 FP, 280 Y	78721700	16	1206	12000	30%	18.2	825	8.5
	25 21900	6	1000	10000	20%	10.2	10.25	100
7 02 P.235 V	2592 200	I D	1205	12000	50%	18.2	8.25	8.9
1 172 P. 2004	18/21/501	6	1600	18000	50%	18.2	10.25	1.0
100112009	2592 200	1D	1200	12000	10%	18.2	8.25	89
16.0 270.4	18721500	.6	1605	18000	50%	18.2	10.25	18
1 P. 460 4	25-70100	120	100	1000	20%	10.2	0.22	Ut
210,7694	25940400	120	400	4000	30%	18.2	8.25	85
2-15-02-	25 7 0500	(5	000	C100	20%	10.2	0.21	03
	25/940400	120	400	4000	20%	18.2	8.25	2.5
3 HP, 483 ¥	78700800	75	400	£(0)	70%	18.2	8.25	8.5
	25-41200	40	1200	12000	20%	10.2	0.20	Ut
	25/940500	75	600	6000	2064	18.2	8.25	8.5
SEP. (8) 4	38301300	40	1200	12000	10%	18.2	8.25	6.5
	25941900	25	1800	10000	30%	10.2	10.20	10.
7 1/2 4P, 460 V	25/941200	40	1200	12000	50%	18.2	8.25	85
1.172.10.402.4	25:2/1900	25	1000	10000	50%	16.2	30.25	10.
IDHR 460 V	85841800	40	1205	12000	50%	18.2	8.25	85
12/11/450 A	25 PT 600	25	1680	100100	50%	162	18.25	18
IS 112,460.9	25741500	25	IBCP	10000	20%	10.2	10.20	10.
20/83/4509	F8/841800	25	1805	18000	30%	18.2	10.25	10.
	25 50500	100	600	e000	20%	10.2	0.22	6.5
5 HF, 575 V	25/251/200	92	1205	12000	40%	18.2	8.25	85
	25 51600	JS	1000	10000	50%	16.2	10.25	10.
10 HC 575 C	25751200	22	1200	12000	20%	10.2	0.20	C S
- many say	78751800	35	1800	12000	40%	18.2	10.25	8.5

Note: To properly size a complete transfer resistor traking kin calculate the peak and average regeneration power of the application, as our lined in steps of traugh 9, if the peak and average power cannot be calculated due to unknown values for items such as system inextral select the braking units above based on the drive horsepower rating and the application duty cycle.

Snubber Transistor Braking Kits

Snubber transistor braking kits provide transistor circuitry for AC drives requiring an external braking transistor. Snubber transistor kits are available in IP20 enclosures or as open chassis construction.

Open Chassis - Snubber Transistors Kits

- For 20-100% Duty Cycles
- 230 V, 460 V

Specifications

Input Power: 1-phase (based on rating)
 Fan Input Voltage: Derived internally

Hertz: 50-60 Hz.

· Input Current: Rated DC current

 Connections: Drive DC bus, ground, input AC line (single phase, rated volts +10, -20% 50-60 Hz), resistor unit

Adjustments: None, automatic voltage level.

. Current Limit: To cared DC current

Maximum On-time: See selection table 2.

Operating Temperature: 0-50-C.

Humidity: Below 90%, non-condensing.

Atmosphere: Free of corrosive gas or dust

 Panel Indicators: DC bus lamp, control power lamp, active braking lamp

Table 2 Chassis Snubber Transistor Kits

verez	Smither		1222			Mousesions on [
ACILINE Voltage	Transistor Kil MVM	Auge 06 HWS	Min Otime	Maximum On-time	UI Lateled	H		U
615	2512000 9	19	20	120 Sec.	700	10	3	6./5
235	25120064	54	6	120 Sct.	no	1.	:	6.76
	29140009	9	75	Conditions	7.0	11	2	0.79
	25140027	d	25	120 Sec.	The	15	3	6.75
	25140070	76	10	120 Sec.	No	14	12	B
420	25140120	122	0	120 Sec.	20	14	12	U
	2:140160	100	- 23	Contractors	50	10	15	U
	25140200	200	3.0	Ontraces	749	10	15	ь
	25140300	902	25	Commission	50	10	15	Б

IP20 Enclosed - Snubber Transistors Kits

- For 6-20% Dury Cycles
- 230 V, 460 V

Specifications

- Input Power: Derived from DC bus.
- Fan Inpur Voltage: 1-phase, 115 VAC.
- Heuz: 50-60 Hz
- Input Current: Rared DC current
- Connections: Drive DC bus, ground, input AC line (single phase, 115 VAC, 50 60 Hz), resistor unit
- Adjustments: None, automatic voltage level.
- Current Limit: To rated DC current
- Maximum On-time: 60 seconds maximum.
- Operating Temperature: 0-50 C
- Humidity: Below 90%, non-condensing.
- Atmosphere: Free of corrosive gas or dust
- Panet Indicators: DC bus lamp, active braking lamp.

Table 3 IP20 Snubber Transistor Kits

A Markey	Souther		- Andrews		Dimensions (in.)		
ACTion Voltage	RH MVH	Ange HC RMS	Min. Ohms	Labeled	н	87	0
	MUSICIUM	15	25	*	12.6	1	2.7
230	MOSYSTEAD	30	12.5	40	12.6		3.0
773	MS675TLGD	60	6.25	160	12.76	1	3.
	W297011 16	12	50	'Au	12.79	5	5.7
	W8570TH 20	20	25	140	12.75	3	3.7
	W6570TH79	71	10	'40	2.75	+	5.7
450	M3575T-126	25	8	'40	7.76	+	5.7
	K3575TH165	150	3.	¥n.	17.75	+	5.7
	W15/51/2019	201	375	30	17.75	1	
	NUS/51 003	300	25	30	17.65	7	2.2

Note: When marching a transister kit with resistors, it is important to select a resistor with the proper change. The of mage must be equal to an greater than the change rating of the transistor. If the resistor of mage is too low, a short of the drive Dulbus may occur which can result to damage to the livelying transister or the drive. If the resistor change is too high, this or no making will occur.

To properly size a snubber transistor for, calculate the regenerative current after application as our incomplished from the property active current entires be as culated that took to rown values for items such as system mertic, the crive howepower can be multiplied by the rule-or-frame formulas at step 10.

Snubber Resistor Braking Kits

Stubber resistor braking kits consist of a resistor, or a combination of resistors, packaged in an 1P20 enclosure for easy mounting and matching with a snubber transistor kit. Tables 4 and 5 list the snubber resistor kits available in 1P20 enclosures, rated for 6 to 2P% duty cycles. Loose resistors or resistors with ratings not listed in tables 4 or 5 (i.e., greater than 20% duty cycle) must be obtained directly from a third party version.

IP20 Snubber Resistor Brake Kits

- For 6-20% Duty Cycles
- 230 V, 460 V

Specifications

- . Optional I an Input Voltage: 1-phase, 60 Hz, 11S VAC
- Connections: Drive DC bus, fault contacts, optional fan AC input line input (single phase, 60 Hz, 115 VAC)
- · Adjustments: None
- Maximum On-time: 60 seconds
 Operating Temperature: 0-50°C
- Humidity: Below 90%, non-condensing
- Atmosphere: Free of corrosive gas or éast
- Fault Indicator: 1 N.C. contact rated for 1 A @ 24 VDC or 0.5 A @ 115 VAC. Contact opens on overtemperature condition (85°C or higher).

Table 4 230 V Soubber Besistor Kits

Simber	-0.000	2.0	Brakin	Watts	1000	1200	Dimensions (in.)		
Resistor Kill Mark	Brailing HP	Duty Cycle	Pezk	Cmrl.	Max. Amps	Diens	Н	W	0
MSS79FL101 MSS79FL101F	Ť	6% 70%	746	50 150	?	190	17,75		8.7
MOSESSELONS MOSESSELONSE	2	44 700	1490	170 370	34	.06	12.75		87
MOSTOFLOR MOSTOFLORE	8	8% 20%	1380	100 400	5	75	7.75	4	87
M3579F1381 M3579F1381F	4	6% 70%	2788	150 450	:6	.53	12,79	4	8.7
M3575FL461 M3575FL461F	4	8% 20%	2761	200 600	6	18	17.75	7	8
MSS79RLSE MSS79RLSEE	5	707	9579	250 850	14	58	17.75	ж	87
MOSTOFI (M) MOSTOFI (M) F	A	6% 20%	4478	900 900	17	50	12,75	7	87
MSS79FLSE MSS79FLSEF	8	64 700	9368	500 1205	910	25	17.75		87
M3575F1961 M3575F1961F	q	6% 107	A714	450 1350	181	'n	17.75	15	87
M3579F111R M3579F111RF	11	FOR	7567	400 1905	×	19	1,7,79	7	9.5
MSS7SFLIAR MSS7SFLIARE	10	8% 20%	11936	400 2400	3	13	7.75	7	93
M3579FL24BF	24	4% 20%	17904	970 3005	47	3	17.79	15	9.7

Table 5 460 V Snubber Resistor Kits

Stubber	Zons	28.5	Brekit	Walls.		il essil	Dimen	Ditteraines (in.)		
Resistor K31 W/H	Braking HP	Duty Cyric	Pezk	Cont	Max. Amps	Chois	H	W	D	
AUSZORIEW AUSZORIEWS	21	01. 374	746	20 15/	2	780	2.75	٠	3.7	
ADMINIST ADMINISTRA	2	91 2014	1490	100 (00)	2	300	2.79		4.7	
AUSZER DZW WYSZEROWYCE	3	##. 1874	2758	150 157	٤	260	2.75	+	6.7	
2057-01-023 2057-01-023-	- 4	174	2584	80°	4	190	2.79	7	4.7	
ADSCHIEG ADSCHIEGE	্ৰ	er: 2014	4000	250	2	150	7.75	4	a.7	
ASS/CHINN ASS/CHINN	G	et are	4176	900 900	c	100	12.79	7	2.7	
APSZERIJSKE APSZERIJSKE	ø	47. 164	6000	25° 1-00	ā	90	7.79	4	8.7	
ASCHINE ASCHNE	್ತಾ	25.	G714	150	9.	B7	2.75	13	4.7	
W25758H118 W25758H1185	397	45 104	8000	450 1500	11.	. FO	7.75	7	9.8	
Websell ned Websellenen	ΙE	05. 374	2000	700 2400	16	46	7.75	7	1.2	
A95750 (246 A95750 (246	24	##. 20%	8000	1:00 3:00	24	30	7.75	15	9.7	
425/50 (5000)	50	di	10000	3.00	23	1-1	17.25	22	22	
W3575BH000025	107	1004	20070	18070	105	7	57.75	25	27	
A25758-0.50785	151	30%	240.0	7000	157	20	75.5	25	25	

Note: When matching a resistor kit with a sniftber transition Li, or with a chive that has a built-in braking consistor, it is important to select a resistor with the proper obmuge. The chinage must be equal to or greater than the chinage roung of the transistor II the resistor chinage is too low, a short of the drive DC but may occur, resulting in damage to the braking transistor or the drive. If the resistor chinage is too high, little or no teaking will occur.

To determine the proper size another resister kid calculate the beal and average power regeneration as well as the beaking dety cycle requirement as ordined in steps 5 through 10. If the regenerative beaking penaltion occurs intro nearly faceward times a day, with long periods of rest, the resister kit can be sized using its instantaneous wat, rating If the regenerative broking condition is repetitive and frequent, the resistor kit must be sized according to the kit's duty cycle and commune a water rating.

Snubber Resistor Braking Selection Information

Table 6 provides snubber resistor sizing information for applications using the GV3000/SE Bookshelf drive.

Table 7 provides srubber resistor sizing and appropriately, matched chassis style srubber transistor kits for applications with 20% or greater duty cycles.

Table 6 Snubber Resistor Kit Sizing for GV3000/SE Bookshelf Drives

GWHUID/SE			Smither	Cati	nel C (In.)	im.	Phone	Cout		
Bookshelf WH	Braking HP	Duty Cycle	Resistor KJR MATA	н	W	D	Braking Watts	Braking Watts	Logi Utms	Amp Rating
51BP	1	477	New RHIN	12.4		4.	/41	50	-22	1985
SHIFTEE	1		Mess that	12.75	1	87	711	191	***	28
eine.	2	97	825780 W	12.75	1	47	1/90	201	141	1
S2ET4/60	2	25%	Moveffel/F	12.0	4	80	1400	233	542	2
seine	3.	177	825780 W	12.78	1	47	70.0	191	22.	1
55117160		-	Mess ton	12.75	1	87	77.2	191	32:	1
26B91	À	477	N21/188-46	12.4	4	4.	284	630	112	•
1211/160		***	MCASS THAT	12.78	2	47	254.4	201	112	1
	*	47	ивены	12.78	1	167	7160	291	120	4
		254	1/201/8H BF	1.5	4	21	4000	539	151	
	к	17	\$25780 W	12.78	2	167	77.77	391	120	
	к	-:4	Mess tent	12.78	2	47	1177	\$21	122	
12:Br	N.	47	Mis-sittle	100	1	4:	H000	(9)	98	4
100,17000	i.	***	V25780040	12.75	1	di-	1944	DIC	91	
101.00		47	5/25/90 AV	15.78	11	117	6714	101	47	
16:874(6)	9	254	ModeFRUNE	12.6	11.	81	8-14	Dec	87	1
24000	11	47	522240 100	12.08		10	.844	191	91	11
2401/160	1.		RASSILLE	12.5	1	10		1810	-91	11
M. Br	12	HT:	Material 188	100	l.	92	12301	730	41	16
1984-120	19	***	KA220028	15.75	1	w	12001	2010	45	18
etar	74	42	522790-240	12.78	11	547	15791	1160	91	28
421FF40e1	44	25.4	MoveFHEREF	1.0	11	9.7	15200	SPEC	91	24

Table 7 Snubber Resistor Size for 20-100% Duty Cycles

18"	Duty Cycle	Smither Transistor Kill WR	Minimum Otros	Mashnun Ohio	Approx. Resister KW
	,	30 Y Urisa-Small	ner Hesistre Sid	ing	
1-5	60%	28/12/0019	200	JU.	2
15	100%	23/120019	200	Jb.	3/4
	60%	25120019	20	29	374
7.5 10	100%	25/20064	b	17	6.2
	60%	23120064	E.	14	9
15 - 20	1004	23120064	t	8.5	- 5
		HI Y Urice South	er Hesister Sin	ing	
	60%	23140027	22	230	2.5
1 - 5	1004	25140027	2.	139	374
	62%	25/140007	2.	Hd	
7.5 - 10	1004	25140027	2.	70	7.5
	20%	25140027	20	Tite	. 6
10 20	60%	23740027	21	39	- 3
	1004	23140070	IC	23	20
	20%	26140070	IC	30	9
40 - 60	60%	25140070	ic	20	27
	1004	28740076	IC	2	45
	20%	28140075	IC	85	5
76 100	60%	23140070	ic	2	45
	1004	231401200	5	7:	75
	20%	26140120	L	17	30
125 200	60%	22/140160	L	6	20
	1004	25140200	3.0	ā	1ac
	20%	25140070	10	12.	37
	40%	23140125	ь	1	15
200	GOS.	23140160	5	G	112
	02%	28140200	່ວນ	4	160
	100%	25140200	2.5	3	60/
	20%	25140070	1¢	12	46
	40%	28740120	t	5.5	20
200	90%	23140160	t	1.1	112
	60%	23140200	30	4	130
	1004	25140200	2.6	3	224
	22%	25140120	1¢	- 9	C2
920	40%	28740160	5	5.3	104
35	60%	29740200	2.0	4	127
	00%	23740300	2.9	3	203
455	20%	29140200	30	9	CU
2000	60%	25140200	2.6	3	172

Line Regeneration Controls

Line regeneration controls are best suited for applications requiring frequent, repetitive starts and stops or applications requiring the AC drive to hold back on a regenerative load. Line regeneration controls do not radiate the large amounts of heat that can radiate from a snubber resistor. This radiated heat must be considered when applying snubber resistors in small machine monts or near operating personnel. Finally, line regeneration controls channel the excess regenerative energy back to the AC power line, which provides the additional henefit of energy savings.

Energy Savings Example:

If a drive rated for 20 HP fully regenerates into a simbher resistor grid during 20% of the application duty cycle, the resistor grid actually dissipates 2,984 watts in hear (20 HP x 20% x 746 watts/HP), every time the load is stopped. If the application runs 24 hours a day, 365 days per year, stopping 20% of the time, the wasted energy would total 26,139 KWH (2984 W x 24 Hrs x 365 Days/1000) watts per KW). With an assumed energy cost of \$.08 per KWH, this application would save \$2,091 per year using a line regeneration control rather than snubber braking resistors.

Line Regeneration Controls

- For 50-100% Duty Cycle
- 230 V. 460 V
- NEMA 12 Enclosure.
- DC Ammerer Door Mounted

Specifications

• Rared Voltage: +/- 10%

Herrz: 50/60 Hz.

 Input Current: 100% of rated DC current, inverse time overload trip

Connections: Input AC line, drive DC bus, ground

· Power Factor: Greater than 90%

· Busing: AC input line, DC drive bus

· Adjustments: None, automatic voltage level

Maximum On-time: Continuous

Operating Temperature: 0-50°C

Humidity: Below 90%, non-condensing

Atmosphere: Free of corrosive gas and dust

 Internal Indicators: Drive active LED, current limit active

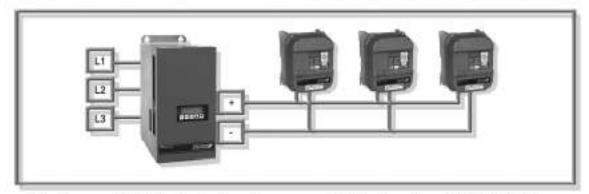
 External Indicator: Power indicator lamp, DC bus ammeter

Table 8 Line Regeneration Controls Selection Tables

S 80	C Mary constant of the	RMS DC - Amps	w/o Fan Option			
AC Unc Volts	Regeneration Control Unit (A/H		46 see, 887	Cort. KW		
	19022008	10	1	3		
*****	19882016	2.0	27	4		
200V	176822025	50	10	4		
	19802046	46	15	4		
	19942008	10		4		
	19842019	20	14	4		
1.012	19042006	50	70	4		
ABOV.	19842045	45	70	4		
	19942000	50	41	37.5		
	19842000	20	51	37.6		

	Regeneration Control Directsions (in)						
	Amp Rating	н	W	0			
wie Fan Dallon	10,20,30,48	7.3	16.2	8.3			
	10,20,30,48	7.5	18.5	5.3			
eth ar Oaton	60,56	28	22	10.4			

Note: To determine the proper size line regeneration control, calculate the regenerative current of the application, as outlined in steps 5 through 10. If the regenerative current cannot be calculated due to unknown values for items such as system incluia, the drive horsepower can be multiplied by the rule-of-shurm's formulas in step 10.


Up to four 60 amp or two 90 amp line regeneration control units can be connected in parallel for use with larger amp rated drives. The model numbers listed in table 3, however, cannot be paralleled. Contact Reliance Electric Prives for more information on regenerative controls configured for parallel operation.

Synchronous Rectifier Controls

- Use as line regeneration control.
- Use as a DC bus power supply source
 Allows energy to be shared between regenerating and insoloring drives
- IP20 enclosures

To function properly, each synchronous rectifier control unit must have a special input line reactor, varistor, and harmonic filter connected at its AC input power terminals. Up to three synchronous rectifiers can be connected in parallel for higher horsepower applications.

Synchronous Rectifier Control used as common DC bus for three GV3000/SE drives

Specifications

Input Voltage: 200-230 VAC, 380-460 VAC models

Hertz: 50/60 Hz

Output Current: Per rated DC current.

Protection Functions: Overcurrent, overload.
 overvoltage, how voltage, phase loss

 Input Signals: Run, reset, answer-back of main magnetic contactor

- Output Signals: RDY signal, FR signal, instantaneous power loss, main magnetic contactor reference contact
- Monitor Display (four, 7-segment LEDs): Input current, input power voltage, DC bus voltage, power, and load racio

Ambient Temperature: 0-55°C.

Humidity: Below 90%, non-condensing

Atmosphere: Free of corrosive gas and dust.

Table 9 Synchronous Rectifier and Accessory Selection Table

	122022-2022			255.00	Additional Hardward Required Ahead of Each Synchronous Rectifier					
AC Line Willege	Synch Rectifier Unit MAN	Workella Tyge	KWA	Output Arres	AC Line Reesto	Verision	Hanconic Filler	ENG Filler Unit		
	854207	Mode	9.5	27	WT-90003	238A0481	MC-80002	- 83		
	\$\$4207P	Steen	9.5	25	A1-30323	2359-3431	700-0000	53		
200 2304	\$\$4216	Made	-25	64	701-2021-1	23500101	WO-0000L	- 93		
	584216P	FREE	22.5	61	WE-51744	23547431	WC-89702	23		
	8512 2	Mode	27	78	4/3-30/05	23% 1431	WC-89707	53		
	58422 P	floor	27	78	225-300-5	25% 431	902-993003	20		
	85/256	Moder	45	2.41	M84900,51.1y2r	20	540	53441.5		
	584285P	Stare	78	270	MB-60025 (4)/21	70	*	FW4413		
	854415	Mode	15	97	MI-90003	23940109	902-80009	-		
	SOME	Gire	12	21	W-30083	23560100	780-00000	50		
	877487	Mode	45	-41	20-574.1	23540102	90-69709			
380 4604	584076	filter	45	- er	All-91 (4.1	204000	W0-9910-			
	897718	Missler	1081	.00	WP-PRO 5 (192)	53		c34415		
	SSTORE	Steen	135	.00	W94900251.1626	- 2		129441.5		

Note: Synch consist Rectifie's NS4265, NS4265P, SS4416, and NS4413P require two MB-R0025 ACT to reactors connected in parallel. CMC Pilter Corr consists of: one BMC Pilter, one Main Contactor, one Harmonic Pilter, & one Varistor. Synchronous Rectifiers are only sold through Reckwell Automation Regional Leive Centers.

Lois decument located at: Impolings relation acom NOTE: This material is not intended to provide specutional instructions. Appropriate Relinnee Electric Prives instruction reasonals precautions should be studied prior to installation, operation, or maintenance of equipment.

Reach us now at www.rockwellautomation.com

Wherever you need us. Rookwell Automation brings together leading brands in industrial automation industrial. A len-Bradley controls. Feliands Black is power transmission components, and Rookwell Software. Rockwell Automation is unique, flexible approach to helping customers achieve a competitive advantage is supported by thousands of authorized partners, distributors and system integrators around the world.

Americas Headquarters, 12.1 South Shored Street, Milwanker, VM 50544, 1,64, Text(1,44,50,2000), Text(1,44,50,2000), Text(1,44,50,2400)

Bumpean Headquarters, SANU, Advance Fermion (Leb. 1, 5, 45, 1,00) Findson, King unit, 14, 62, 2,933,9600), Act (12),7433,0640

Asia Pacific Headquarters, 27.1 Citicup Certie, 10 (VMHz) - Neel, Datestway Rey 1 to 5, king Text(250,2007,4703, Text(250,200,400))

Relience Flectric Streethed Debres Busineses, 2700 - tingsten Frank (New and 1,00,000), 1,500, 1

