

REVISION PAGES ATTACHED AT END OF MANUAL.

> User's Manual for the HEC-FP3-DN

DeviceNet[™] Network

for use with Reliance Electric FlexPak 3000 DC Drive

Fourth Edition February 25, 1998

MAN0086-04

PREFACE

This manual explains how to use the Horner Electric's DeviceNet™ Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive.

Copyrigh. (C) 1998 Homer Electric, Inc., 640 North Sherman Drive, Indianapolis, Indiana 46261. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior agreement and written permission of Homer Electric. Inc.

All software described in this document or media is a spleopyrighted material subject to the terms and conditions of the Homer Software License Agreement.

Information in this document is subject to change without not ce and does not represent a commitment on the part of Homer Electric, Inc.

DeviceNet™ is a trademark of the Open DeviceNet™ Vendor Association. Inc. (OVDA).

FlexPak 3000% and Reliance% are registered trademarks of Reliance Electric Company or its subsidiaries.

For user manual updates, contact Horner Electric Advanced Products Group, Technical Support Division, at (317) 916-4274 or visit our website at www.heapg.com.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Homer Electric, Inc. ("HE") warrants to the original purchaser that the DeviceNet^w Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive manufactured by HE is free from defects in material and workmanship under normal use and service. The obligation of HE under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within two (2) years from the date of manufacture or eighteen (18) months from the date of installation by the original purchaser whichever occurs first, such detect to be disclosed to the satisfaction of HE after examination by HE of the allegedly defective part or parts. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED. INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES AND HE NEITHER ASSUMES, NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR HE, ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF THIS DeviceNet** Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive. THIS WARRANTY SHALL NOT APPLY TO THIS DeviceNet™ Network Communication. Option Board for use with the Reliance Electric FlexPak 3000 DC Drive OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCIDENT, NEGLIGENCE, ALTERATION, ABUSE. OR MISUSE. HE MAKES NO WARRANTY WHATSOEVER IN RESPECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE. THE TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON FOR WHOM THE DeviceNet^w Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive IS ORIGINALLY INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall HF or its suppliers be liable of any special, consequential, incidental or penal damages including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

To obtain warranty service, return the product to your distributor with a description of the problem, proof of purchase, post paid, insured and in a suitable package.

ABOUT PROGRAMMING EXAMPLES

Any example programs and program segments in this manual or provided on accompanying diskettes are included solely for illustrative purposes. Due to the many variables and requirements associated with any part cular installation. Homer Electric cannot assume responsibility or liability for actual use based on the examples and diagrams. It is the sole responsibility of the system designer utilizing the DeviceNet™ Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive to appropriately integrate the DeviceNet™ Network Communication Option Board for use electric FlexPak 3000 DC Drive and to make safety provisions for the end equipment as is usual and customary in industrial applications as defined in any codes or standards which apply.

Note: The programming examples shown in this manual are for lilustrative purposes only. Proper machine operation is the sole responsibility of the system integrator.

SAFETY NOTICES

DANGER

Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install it. Read and understand this manual in its entirety before proceeding. *Failure to observe this precaution could result in severe bodily injury or loss of life*.

DANGER

The user is responsible for conforming to the nec/cec and all other applicable local codes. Wiring practices, grounding, disconnects, and overcurrent protection are of particular importance. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

DANGER

Do <u>not</u> install modification boards with power applied to the controller. Disconnect and lock out incoming power before attempting such installation. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

WARNING

Only qualified individuals who are thoroughly familiar with the particular application may install, operate and maintain this equipment. Before any work is performed, read and understand this instruction manual as well as the appropriate drive instruction manual(s). *Failure to observe this precaution could result in severe bodily injury*.

TABLE OF CONTENTS

PREFA		
LIMITE	D WARRANTY AND LIMITATION OF LIABILITY	3
ABOUT	PROGRAMMING EXAMPLES	3
	Y NOTICES	
TABLE	OF CONTENTS	
	ER 1: INTRODUCTION	
1.1	General	
1.2	Description	
1.3	Additional Information	
1.4	Related Hardware and Software	ģ
	ER 2: INSTALLATION	
2.1	General	
2.2	Installing the Network Communication Option Board	õ
	1 Safety Notices	
	2 Procedure to Install the Network Communication Option Board	ň
2.3	Connecting the FlexPak 3000 Controller to a DeviceNet Network	
	FB 3: NETWORK OVERVIEW	Ā
1.2	General	
3.2	Network I ayout	
3.3	Network Setup	
3.4	Network Connections	5
3.4		5
3.4		5
3.4		
3.4		2
	ER 4: DRIVE CONFIGURATION	- -
1.2	General	
4.2	Network Cernmunication	
4.2	Network Comparison Types	4
10000	Network Connection Types	
4.3		
4.3	NTX /TX /TX /TX /TX /TX /TX /TX /TX /TX /	
4.3	.3 FULL Drive Connection	8
4.4		
4.4		8
4.4		
	ER 5: PROGRAMMING.	
5.1	Data Types and Transfer Rates	
5.1		
5.2	Data Types and Transfer Rates	
5.2	N10 1974 00071-03000-001	
5.2		
5.3	Transfer of Data from the Network Option Board to the Regulator	
5.4	Transfer of Data from the Regulator to the Network Option Board	2
5.5	Tune/Config Update Synchronization Flag	2
5.6	PO Update Fnable Logic Summary	2
5.7	Parameter Processing Error Flag	
5.8	Data Retention Timing Requirements	
5.9	Drive Ready Status Bit	
5.10	Network Register Organization	3
5.11	F exPak 3000 Parameters Not Accessible Over the Network	
5.12	Pol Connection Data Transfer Format	
	2.1 General	6
5.1	2.2 Poll Connection Command Data Format	6

5.	12.3 Poll Connection Reply Data Format	
CHAP	TER 6: ELECTRONIC DATÁ SHEET (EDS) FILE	
6.1	General	
6.2	Installation	
6.3	Jsing the EDS File	
6.4	Data Mapping	
APPEI	NDIX A - FÉÉXPAK 3000 PARAMETERS	
APPE	NDIX B: POLL CONNECTION DATA FORMAT	
APPE	NDIX C: EXPLICIT MESSAGING FOR THE HEC-FP3-DN	
1.1	General	
1.2	Explicit Message Format	
1.3	Explici: Message Response Formal	
1.4	Explicit Message Error Format	
1.	4.1.1 Components of an Explicit Error Message (See Table C.4)	
1.5	Error Codes	
1.6	Jsing Explicit Messages and Polling with the Same Device	

This Page Intentionally Left Blank

CHAPTER 1: INTRODUCTION

1.1 General

1.1.1 The Homer Electric's DeviceNet[™] Network Communication Option Board is designed to allow a Reliance FlexPak 3000€ (version 3.1 or higher) to be operated and monitored via the DeviceNet network. The option board makes use of the parallel-bus connection port on the FlexPak 3000 controller. The option board mounts behind the regulator board inside the FlexPak 3000 carrier assembly and connects to the regulator board via a flexible ribbon cable. Power for the option board comes from the FlexPak 3000 centroller power supply.

1.1.2 In normal operation, the drive can be completely controlled via the network option board. In many applications, there may be only a network interface connection, a hard-wired emergency step (function less input), and three-phase input and output power wring. Start, stop, fault codes and complete control can be accomplished over the DeviceNet network.

1.2 Description

1.2.1 The section describes the mechanical and electrical characteristics of the DeviceNet Network Communication Option Beard.

a. Mechanical Description

The DeviceNet Network Communication Option Board is a printed circuit assembly that mounts inside a FlexPak 3000 Controller. It connects to the regulator board within the controller via a ribbon cable. It has a standard DeviceNet S-pin "pluggable" screw-terminal connector which is used to connect a DeviceNet cable (dual twisted pairs with shield).

b. Electrical Description

The DeviceNet Network Communication Option Board contains its own microprocessor. The microprocessor connects to one part of the board's dual port memory while the other port interfaces to the FlexPak 3000 regulator. The board contains a watchdog timer which is enabled when power is turned on the controller. The microprocessor must reset the watchdog timer with n a specified period or the microprocessor will shut down resulting in a fault.

At power-up, the microprocessor will run diagnostics on the CPU, EPROM, RAM, memory management unit, and dual port memory. If there is an error during diagnostics, a fault will be generated, and the output parameter NETWORK KIT (P.796) (available in the OIM's Drive Information menu) will indicate "FAILED DIAGS". If the power up self tests pass, the NETWORK KIT parameter will indicate "INSTALLED".

Fach option card requires a maximum of 95mA @ 11VDC of DeviceNet network power for the transceiver circuit to operate.

1.3 Additional Information

1.1.3 The user must be familiar with all of the instruction manuals that describe the system configuration. This may include, but is not limited to, the following:

D2-3335 FlexPak 3000 Digital DC Drives (1%-75HP @ 230VAC, 3-300HP @ 460 VAC)

1.4 Related Hardware and Software

1.4.1 The option board package consists of one DeviceNet network communication option board, which provides a single connection to a DeviceNet network. This board can be mounted inside a FlexPak 3000 controller, which can then be used with the following hardware and software (purchased separately from Allen-Bradley):

a.	1747-SDN	SLC500 DeviceNet Scanner Module
b.	1746 P2	SLC500 Power Supply
C.	1747-L532	SLC503 Central Processing Unit
d.	1746-A4	SLC500 Rack
θ.	1787-MGR	DeviceNet Manager Software
ť. 1	1747-PA2E	SLC500 Advanced Programming Scitware

Note: The list includes the devices that would be required to construct an SI C500-based DeviceNet controller. This is only one example of the many different DeviceNet controller combinations that can be used.

CHAPTER 2: INSTALLATION

2.1 General

2.1.1 The section describes how to install the DeviceNet Network Communication Option Board into the FlexPak 3000 controller and how to connect the controller to a DeviceNet network.

2.2 Installing the Network Communication Option Board

2.2.1 Safety Notices

a. Danger

Only qualitied electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install it. Read and understand this manual in its entirety before proceeding. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

b. Danger

The user is responsible for conforming to the nec/ceo and all other applicable local codes. Wiring practices, grounding, disconnects, and overcurrent protection are of particular importance. *Fallure to observe this precaution could result in severe bodily injury or loss of life.*

c. Danger

Do <u>not</u> install modification boards with power applied to the controller. Disconnect and lock out incoming power before attempting such installation. *Failure to observe this precaution could* result in severe bodily injury or loss of life.

d. Warning

Only qual field individuals who are thoroughly familiar with the particular application may instal operate and maintain this equipment. Before any work is performed, read and understand this instruction manual as well as the appropriate drive instruction manual(s). *Fatlure to observe this precaution could result in severe bodily injury.*

2.2.2 Procedure to Install the Network Communication Option Board

2.2.2.1 Use the following procedure to install the Network Communication Option Board. Refer to Figures 2.1, 2.2, and 2.3 for mounting locations.

- Turn off, lock cut, and tag all incoming power to the FlexPak 3000 drive.
- Loosen and remove the two (2) mounting screws on the FlexPak 3000 drive cover and remove the cover.
- Loosen the captive screw on the carrier and swing open the carrier.
- Loosen and remove the four screws attaching the carrier shield to the carrier.
- Remove the connector attaching the shield's ground wire to the drive's power supply. Set the shield aside.
- Position the Option board over the molded standards.

- Secure the Option board using three (3) captive screws on the board.
- Plug the Option board ribbon cable into the Option board.
- Re-attach the carrier shie d's ground wire to the drive's power supply.
- 10. Re-attach the carrier shield to the carrier.
- 11. Close the carrier and fasten it with the captive screw.
- 12. Route the DeviceNet network cable through the leftmost opening at the bottom of the controller. With the contacts numbered 1-5 from left to right, connect as described be ow:

Pin 1:	٧-	(black)
Pin 2:	CAN L	(blue)
Pirt 3:	SHIELD	(bare)
Pin 4:	CAN H	(white)
Piri 5:	V+	(red)

13. Re-install the FlexPak 3000 drive cover.

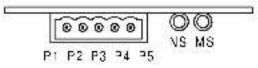


Figure 2.1 - DeviceNet Option Board End View

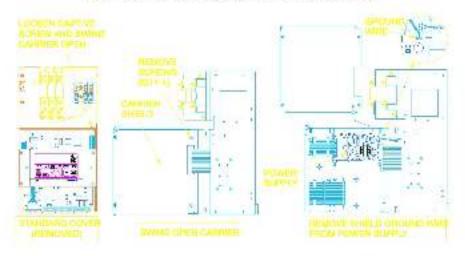


Figure 2.2 - Carrier Shield Removal

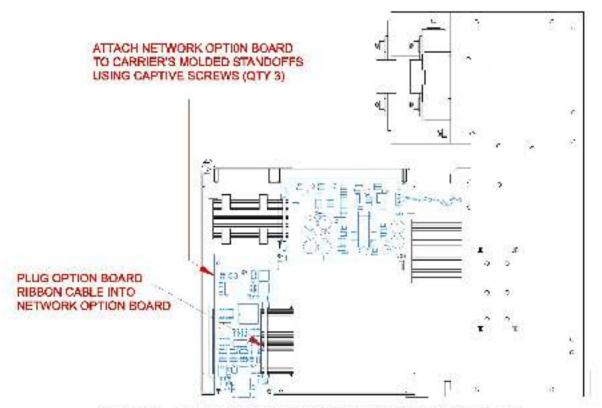


Figure 2.3 - Installing the Network Communications Option Board

2.3 Connecting the FlexPak 3000 Controller to a DeviceNet Network

2.3.1 When connecting to the DeviceNet network, the FlexPak 3000 controller should be wired with the same cabling and termination as any other DeviceNet device. For additional information, refer to Volume 1 of the DeviceNet Specification, Chapter 9.

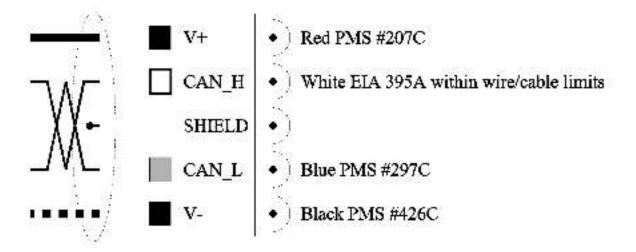


Figure 2.4

CHAPTER 3: NETWORK OVERVIEW

1.2 General

3.1.1 The DeviceNet Network Communication Option Board provides the Reliance FlexPak 3000 DC Drive with connectivity to a popular industrial network. DeviceNet. Through this option board, the FlexPak 3000 can reside on an industrial control network with a host of industrial control products. The FlexPak 3000 can, then, be easily monitored and/or controlled by a PLC through a DeviceNet Scanner module residing in a PLC. This allows a great deal of flexibility in the way that the FlexPak 3000 is controlled, and also, the amount and type of data that can be passed to and from the drive. This capability adds flexibility to the way FlexPak 3000 DC Drives can be integrated in an industrial control application.

3.2 Network Layout

3.2.1 The DeviceNet standard supports up to 64 nodes on a single network. Because DeviceNet is a master-slave network, it requires that a DeviceNet Master or Scanner be present on the network. The Scanner establishes all connections and nitiates all communications with network devices.

3.2.2 In a typical industrial application, a DeviceNet network consists of a scanner and one or more DeviceNet devices which operate by manipulating PLC memory.

3.3 Network Setup

3.3.1 DeviceNet is a network consisting of four wires plus shield. Five connections are typically made to each device on the network including two for power, two for communications signals, and one for shield.

- 3.3.2 Each device on the network must be configured using:
- Data rate and node address, and
- b. Device-specific information.
- 3.3.3 There are three methods to configure the devices:
- Mechanical switches only,
- b. Parameter values stored in the device's memory, and
- Electronic data sheet files.

The option card is configured using parameter values stored in its memory. These parameter values are set from the FlexPak 3000 keypad. See Chapter 4 for details.

3.4 Network Connections

3.4.1 Types of Network Connections

3.4.1.1 When a FlexPak 3000 DC Drive (using the DeviceNet Network Communications Opton Board) is configured and resides on an active DeviceNet network, a significant amount of FlexPak 3000 data is accessible over the network. The data may be read and/or written from the drive by the DeviceNet master or scanner.

3.4.1.2 The DeviceNet data may be accessed by the master through three distinct "connections", these are:

- a. Polled connection.
- b. Explicit connection
- Bit-strobed connection.

3.4.2 The Polled DeviceNei Connection

3.4.2.1 The Polled DeviceNet connection provides the primary means of drive control and monitoring. The DeviceNet master establishes the polled connection and transfers OUTPUT data in poll command messages. The drive returns INPUT data in poll reply messages. Note that all of the data accessible through the poll connection is also accessible through the explicit connection:

3.4.2.2 Some applicationsl make use of a large number of drives with limited functionality connected to a single network. Only certain parameters and diagnostic information commonly used are required for network control. Complete configuration over the network is <u>not</u> a requirement for low-cost, high performance network applications. This type of poll connection is referred to as the **control only** poll connection. The network master issues a poll command that contains 4 words of data for output to the drive, and the drive returns a series of poll reply messages that contain 8 words of input data from the drive.

3.4.2.3 Other applications accept a slower network in exchange for greater drive parameter access over the network. This type of poll connection is referred to as the **control + config** poll connection. When the drive is configured in this manner, the network master issues a series of poll commands that contains 26 words of data, and the drive returns a series of poll reply messages that contains 13 words of data. Since a greater amount of network data is transferred, the network scan rate performance is adversely affected.

3.4.2.4 The amount of data transferred through the polled connection is dependent on the drive configuration performed in Section 4.2. Poll command/reply data format is defined in Section 5.12.

3.4.3 The Explicit DeviceNet Connection

3.4.3.1 The Explicit DeviceNet connection is required of all DeviceNet modules. Through this connection, the DeviceNet master can:

- Establish communication through all 3 connections.
- b . Access DeviceNet object information

c. Access ALL FlexPak 3000 network parameters. (See Section 5.10 for a list of drive parameters and the method used to access them through the explicit connection).

PAGE 16

3.4.3.1 The explicit connection is primarily used by the DeviceNet controller to initially establish communications. Once the poll and/or strobe connections are established, the controller will normally access the drive data through them.

3.4.4 The Bit-Strobed DeviceNet Connection

3.4.4.1 The bit-strobed connection allows a DeviceNet master to send one bit of information simultaneously to all devices on the network. The bit of information is used for different purposes by different devices residing on the network.

3.4.4.2 The FlexPak 3000 (with communications option board) uses the bit received in a bitstrobe connection as a start command. It allows the multiple drives to be started "simultaneously", although it may take up to 100mS, for all drives to start.

CHAPTER 4: DRIVE CONFIGURATION

1.2 General

The section describes how to configure the FlexPak 3000 controller containing the DeviceNet Network Communication Option Board for use on the DeviceNet network. Refer to the FlexPak 3000 Installation and Operation instruction manual for more information on the drive parameters described below.

4.2 Network Communication

4.2.1 The drive becomes active on the DeviceNet network after the user performs the following steps. Note that these steps should be followed in the order listed to prevent drive fault(s). (The HEC-FP3-DN Card cannot be used in conjunction with Automax card).

1. Connect the Network Opt on board to the network via the standard "pluggable" DeviceNet connector (See Section 2.2 for whing information).

2. Apply power to the drive.

 Using the keypad, access the drop number assignment parameter (NETW DROP NUMBER (P.900)) and assign a valid DeviceNet network drop number to the drive.

4. Using the keypad, access the network connection type parameter (NETW CONNECT TYPE (P.910)) and select either **Basic Drive Connection** or **Full Drive Connection**.

 Using the keypad, access the DeviceNet Baud Rate (NETW BUAD RATE) (P.912) parameter and select 125.0 KBAUD, 250.0 KBAUD, 500.0KBAUD, or OTHER.

 Using the keypad, access the DeviceNet poll message type (DEVNET POLL MSG TYPE) (P.913) and select CONTROL ONLY or CONTROL+CONFIG.

Apply power to the DeviceNet network.

4.3 Network Connection Types

4.3.1 Two Types of Network Connections

4.3.1.1 The drive's network connect on type defines the scope of data and control that the master has with the connected drive. Two types of connections are provided: BASIC drive connect on and FULL drive connect on. The drive's network connection type is selected with a drive parameter (NFTW CONNECT TYPE (P.910)).

4.3.2 BASIC Drive Connection

4.3.2.1 Sciect **BASIC** drive connection if the application does not require a complete configuration of the drive over the network. Only certain parameters and diagnostic information commonly used will be controlled over the network. Selecting this option for NETW CONNECT TYPE (P.910) results in data size of 64 words.

4.3.3 FULL Drive Connection

4.3.3.1 Select **FULL** drive connect on if your application requires the ability to configure the drive over the network and to have access to almost all parameters, operating variables, and diagnostic information. Selecting this option for NETW CONNECT TYPE (P.910) results in a data size of 256 words.

4.4 Drive Response to Loss of Network Communication

4.4.1 Overview

4.4.1.1 The Network Option board will attempt to remain active on the network at all times. Whenever communication is interrupted, the board will immediately notify the drive regulator of this occurrence and then attempt to release lish communication with the network master. To eliminate extraheous fault conditions at power-up, the drive will delay for approximately 10 seconds after power-up before indicating a fault/alarm condition. A fault/alarm condition will be indicated if network communications was established before the 10 second power-up timer expires, or if network communications was established and then lost.

4.4.2 Fault/Alarm Conditions

a. If **CONTROL SOURCE SELECT** ((P.000) on the DCM) is not set to NETWORK (3), the loss of network communication will <u>not</u> cause a fault or a arm to occur. If CONTROL SOURCE SELECT is set to NETWORK, the drive will react to the network communication loss based on how the communication loss selection parameter (NETW COMM LOSS SELECT (P.901)) has been configured.

b. If NETW COMM LOSS SELECT (P.901) is set to FAULT (0), the drive will consider a loss of network communication a drive fault resulting in a coast/DB stop. In this case, the response to network communication loss is as follows:

1. The drive will latch a fault condition and perform a coast/DB stop.

A fault will be logged in the drive's fault log and will be displayed on the front-panel display ("NETWORK COMMUNICATION LOSS").

The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

4. Once network communications has been re-established, a drive fault reset will be required before the drive can be re-started. (Note: A fault reset does not clear the fault log).

c. If NETW COMM LOSS SELECT is set to HOLD LAST REF (1), the drive will continue to operate using the last reference received from the network master. In this case, the response to network communication loss is as follows:

1. An atarm will be logged in the alarm log.

An entry will be made into the drive's error log for each active-to-inactive transition of network communication status.

The front-panel display will indicate that a "NETWORK COMMUNICATION LOSS" alarm has occurred.

The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

 The drive can be stopped using the hardwired stop input (coast/DB stop, CTB-8) or by pressing the front panel stop key (STOP MODE SELECT). Once stopped, the drive cannot be restarted until network communication is re-established or CONTROL SOURCE SELECT is changed.

If the drive is still running when network communications has been re-established, the drive will once again follow the reference and sequencing control inputs supplied by the network master.

WARNING

The controller is <u>not</u> equipped with a coast-stop push-button. The user must install a hardwired operator-accessible push-button that provides a positive interrupt and shuts down the drive. **Failure to observe this precaution could result in bodily injury.**

NOTE: When NETW COMM LOSS SELECT is set to HOLD LAST REF, it may not always be possible to stop the drive over the network after a comm loss has occurred. A <u>hardwired stop</u> must be used to stop the drive.

d. If NETW COMM LOSS SELECT (P.901) is set to USE TRMBLK REF (2). It is drive will continue to operate using the selected auto reference value obtained from the term hall block inputs. In this case, the response to network communication loss is as follows:

1. An alarm will be logged in the alarm log.

The front panel display will indicate that a "NETWORK COMMUNICATION LOSS" alarm has obsurred.

The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

4. The drive can be stopped using the hardwired stop input (coast/DB stop, CTB-8), by pressing the from panel stop key (STOP MODE SELECT), or by using the terminal block stop input (STOP MODE SELECT, CTB-3). Once stopped, the drive cannot be re-started until network communication is re-established or CONTROL SOURCE SELECT is changed.

5. If the drive is still running when network communication has been relestablished, the drive will once again follow the reference and sequencing control inputs supplied by the network master. The terminal block stop input (CTB 3) will no longer be active.

WARNING

The controller is <u>not</u> equipped with a coast-stop push-button. The user must install a hardwired operator-accessible push-button that provides a positive interrupt and shuts down the drive. **Failure to observe this precaution could result in bodily injury.**

NOTE: When NETW COMM I OSS SELECT is set to USE TRMBLK REF, it may not always be possible to stop the drive over the network after a comm loss has occurred. A <u>hardwired stop</u> must be used to stop the drive.

CHAPTER 5: PROGRAMMING

5.1 Data Types and Transfer Rates

5.1.1 General

5.1.1.1 In order to minimize regulator board CPU loading, the transfer of register data between the HEC-EP3-DN and the drive regulator board will <u>not</u> occur at all times and will <u>not</u> occur at the same rate.

5.1.1.2 The sections that follow describe the data types for input and cutput register data, along with typical drive information in each category. The specific register list for the FlexPak 3000 controller appears in Section 5.3.

5.2 Data Types and Transfer Rates

5.2.1 Input Data

5.2.1.1 The drive input data is categorized as one of three types: Control/reference, tunable, or configurable.

a. **Control/reference** inputs include data which require fast update rates. This includes data such as sequencing inputs (start, stop, run/log, fwd/rev, etc.) and speed/torque reference. Control/reference inputs are transferred from the network option board to the regulator board every <u>speed loop scan period</u> (for the FlexPak 3000, every 20 milliseconds), or as often as it is required by the drive. For example, if the drive is configured to obtain its torque reference from the option part, it will read this data from the option part every <u>current m nor loop scan</u>.

b. Tunable inputs include parameters which typically require modification or adjustment while the drive is running. Tunable data includes parameters such as accel/decel rates, min/maxlimits, gains or offsets, etc.

Tunable inputs are transferred from the network option board to the regulator board whenever the regulator performs the processing of new tunable parameters. This occurs approximately every 100 milliseconds while the drive is <u>running or stopped.</u>

c. **Conligurable** inputs include parameters which after the way that the drive operates in such a way that they **cannot** be modified while the drive is running. Configuration data includes parameters such as reference source selection, I/O configuration, motor/tach nameplate data, etc.

Configurable inputs are transferred from the network option board to the regulator board whenever the regulator performs processing of new configuration parameters. This occurs approximately every 100 milliseconds <u>while the drive is stopped</u>. Values sent from the network master while the drive is running will not be read in and used by the drive regulator until the drive is stopped.

5.2.2 Output Data

5.2.2.1 The drive output data is categorized as one of two types: Runtime signal data, or tunable, configuration and status data.

a. **Funtime signal data** includes items such as selected speed reference value, sequencing status (ready, running, etc.), drive fault flags, terminal block digital inputs state, and front panel display mode values (RPM, Volts, Amps). The information is transferred from the regulator board to the network option board every speed loop scan period (for the FlexPak 3000, every 20 milliseconds).

b. **Tunable, configuration and status data** includes all other information provided by the drive which is not defined as runtime signal data. This would typically include all drive parameter values. When accessed via the DeviceNet explicit connection, this data provides a complete image of how the drive is configured and operating. Tunable, configuration and status data are transferred from the regulator board to the network option board whenever the regulator performs the processing of new tunable and configurable input parameters. This occurs every 100 milliseconds.

5.3 Transfer of Data from the Network Option Board to the Regulator

5.3.1 The network option must be actively communicating with the master and it must be selected as the drive control source (P.000 = Network (3) on DCM or Control Source Select Screen Set to "Network" on OIM) in order for <u>any</u> inputs to be transferred from the network option board to the drive regulator.

5.3.2 Note that the keypad can still be used to change parameter values when the drive control source is the network option. However, any changes made via the keypad will be overwritten when the next network update occurs (if the network option is configured to update the specified keypad parameter). This should be kept in mind if parameter changes need to be made while the network option is the control source for the drive.

5.3.3 In addition, a network-master-controlled tune/config input enable bit (word 32, bit 14) is provided to enable the transfer of tunable and configurable inputs from the network option board to the drive regulator. **Until this bit is set ON (1), only control/reference data are read in by the drive.** This gives the master's application program direct control over when tunable and configurable parameter values are read in by the drive. If at all.

5.3.4 <u>For example</u>, the master application program would typically initialize the tunable and configurable parameter data in the master's network card dual-port memory <u>before</u> turning on the tune/config input enable bit.

5.3.5 <u>Another example</u> would be an application which only wants to send control/reference data to the drive. In this case, the master would always leave the tune/config input enable bit OFF. The drive would then be configured locally, but start, stop, reset and reference would be sent from the network master.

5.3.6 Note that when the drive's poli connection is configured for control only operation, the tune/config input enable bit is forced to 0, regardless of its state in the poli command data.

5.4 Transfer of Data from the Regulator to the Network Option Board

5.4.1 All output data provided is transferred to the network option board <u>at all times</u>. The network <u>does not</u> have to be active and the network option <u>does not</u> have to be selected as the drive control source (P.000). No output enable control bit is necessary.

5.5 Tune/Config Update Synchronization Flag

5.5.1 To allow the network master's application program to determine when tunable and configurable inputs have been updated in the drive, a master write bit (Register 32, bit 15) is provided which is copied to a master write bit (Register 0, bit 7) by the drive. The drive will copy the master write bit to the master read bit <u>after</u> the drive has read in and processed all tunable and/or configurable input registers. The tune/config input enable bit must be set (1) in order for this to happen. Note that configurable type inputs are only read in by the drive while it is not running. This will not affect the copying of the network synchronization bit since tunable inputs will still be transferred.

5.5.2 By toggling the network synchronization bit in the master and by monitoring the copied value from the drive, the master's application program can determine when the drive has read in that data. This feature is provided for those applications which may require this type of synchronization. It is not necessary for the master's application program to use it, as it has no affect on drive operation. To determine when changes to funable and contigurable data on the drive have been completed, the master would perform the following sequence:

- Step 1. Modify the tunable and/or configurable register data in the appropriate network register(s).
- Step 2. Set the tune/config input enable flag (if not already set).
- Step 3. Toggle the network synchronization flag.
- Step 4. Monitor the loopbacked copy (read register) of the network synchronization flag until it equals the value written in step 3.

5.6 I/O Update Enable Logic Summary

5.6.1 The following logic strings summarize the cutput and input enable logic described above.

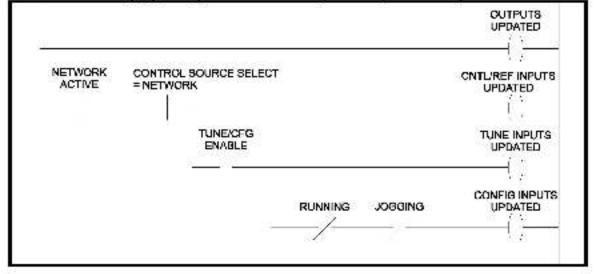


Figure 5.1 Logic Strings

5.6.2 OUTPUTS UPDATED indicates when all output data is transferred from the drive regulator to the network option board memory and consequently to the master.

5.6.3 CNTL/REF INPUTS UPDATED, TUNE INPUTS UPDATED, and CONFIG INPUTS UPDATED indicate when control/ref, tunable, and configurable inputs, respectively, are transferred from the network option board memory to the drive regulator.

5.7 Parameter Processing Error Flag

5.7.1 A parameter processing error status flag (Register 0, bit 12) is provided to allow the network master to determine whether any parameter values are unacceptable to the drive. If this flag is set (1), then one or more parameters sent to the drive were rejected. If this flag is not set (0), then all parameters sent to the drive were accepted.

5.7.2 Note that the tune/config inputs enable bit must be set (1) before the drive can read in, and consequently process, any tune/config parameters. The parameter processing error flag is updated approximately every 100 milliseconds.

5.8 Data Retention Timing Requirements

5.8.1 All tunable and configuration drive input register values must be maintained by the network master's application program for at least 500 msec. to assure that they are seen by the drive. The 500 msec, is in addition to the time required by the network master to transmit this data to all the FlexPak 3000 drops (dependent on the number of devices on the network). This is part cularly relevant for data which is detected by the drive only on transit on.

5.8.2 Control/Reference data types do not have this 500 msec. requirement. They are scanned (read in) by the drive every 20 msec. The Bun and Jog inputs and the Fault and Alarm Log Clear command input are exceptions, and are described below.

5.8.3 The Run and Jog inputs requires a 0-to-1 transition in order to start the drive. Processing the Run and Jog inputs from the network may be delayed by the drive for up to 100 msec. This is done to synchronize a drive start to the processing of new configuration data. In order for the network master to assure this 0-to-1 transition is detected by the drive, the network master must maintain both the 0 and 1 states for at least 100 msec. Values which are maintained for less time may not be detected by the drive.

5.9 Drive Ready Status Bit

5.9.1 The Drive Ready status bit (Drop 1, reg. 0 bit 0) is used to indicate that a 0 to 1 transition on the Run or Jog input will start the drive. The Drive Ready bit will be ON (1) when <u>all</u> of the following conditions are met, and OFF (0) when <u>one or more</u> are not met:

- a. No drive faults are active (Drop 1, reg. 0 bit 2 0)
- b. Stop input is ON (Drop 1 reg. 32 bit 1 = 1)
- c. Front-panel STOP/RESET button is not pressed
- d. Coast/DB Stop terminal block input is closed (Drop 1, reg. 6 bit 10 = 1)
- Customer Intericck terminal block input is closed (Drop 1, reg. 0, bit 11 1)

5.10 Network Register Organization

5.10.1 When the drive network connection type parameter (NETW CONNECT TYPE (P.910)) is configured for BASIC drive connection, the FlexPak 3000 drive will communicate its <u>first 64</u>

registers to the network communications card. Through an "Explicit" DeviceNet connection, all of this data is available to the DeviceNet master.

5.10.2 When the drive Network Connection Type is configured for FULL drive connection, the FlexPak 3000 drive will communicate <u>all 256</u> of its registers to the network communications card. Through an All of this data is available to the DeviceNet master through an "Explicit" DeviceNet connection.

Register #s	Automax References
0-63	0-63, Drop 1 (Table A.1)
64-127	0-63, Drop 2 (Table A.2)
128-191	0-63, Drop 3 (Table A.3)
192-256	0-63, Drop 4 (Table A.4)

The complete list of FlexPak 3000 parameters are located in Tables A.1 - A.4 in Appendix A.

5.11 FlexPak 3000 Parameters Not Accessible Over the Network

5.11.1	The to lowing FlexPak 3000 parameters are not accessible over the network at any	time.

FlexPak 3000 Parameter Name	Parameter #	FlexPak 3000 Parameter Name	Parameter #
CT TURNS PATIO	010 10	OML ERITOR	P.355
MANUAL REF SELECT	F.106	ABMA: UFE DELTA	P.S09
MOP ACCEL TIME	F1.5	METER CUT LISAIN ADJ	P 400
MOP RESET ENABLE	F 119	METER OUT 2 GAIN ADJ	P.4()*
PRESET SPEED	P.1*7	METER OUT 1 ZERO ADJ	P.402
PRESET SPEED 2	P.1*8	METER OUT 2 ZERO ADJ	P.403
PRESET SPEED S	F.1*9	METER OUT 1 SELECT	P.401
MOP DECEL TIME	P.120	METER OUT 2 SELECT	P.405
TOBOUE REFERENCE	P 189	FLU GURRENT REGULATOR	P 5-38
MOP OUTPUT	P 191	FIELD DELTA HIGH UM	P 587
ANALOG MAN REFERENCE	F 192	FIELD DECTA	P.588
DRAW PERCENTAGE OUT	P.196	J20 FIELD LOSS DETECT	P.597
SPEED RAMP INPLIT TP	P.198	J21 FLD SUPPLY JUMPER	P.538
SPEED RAMP OUTPUT	P.199	J11 ANLG TACH VLT SCL	P.792
SELF TUNE FIELD HANGE	F 2 8	J 4 ANLG TACH VET BNG	P.708
SHIF DUNE STABILL Y	Ho 8	FOMER (IND. 1 ABE	P 705
SFLF TUNE BRIDGE	F 220	NETWORK KIT	P.796
IB COMPENSATION TP	F.290	KO EXPANSION KIT	P.707
CURRENT COMPOUND TP	P 293	PULSE TACHOMETER KIT	P.756
JCC RAMP OLTPUT	F.291	J-5 RECULATOR TYPE	P.789
SPD LOOP LAC OUTPUT	F.256	OOL REFERENCE	P.8/15
PHASE FIRE 1-5. DELTA	F 300	CGL F-EDBACK	P 847
PHASE FIRE TST BRIDGE	P 3 0	OC ENAB E	P 849
A CLINE PERIOD	P 393	NETW DROF NUMBER	P.900
J'8 ABM1 FE RESISTOR	F.395		
CML FEEDBACK	P.397		3

5.12 Poll Connection Data Transfer Format

5.12.1 General

As described in Section 4.3.3, the DeviceNet polled connection is used in most cases to accomplish drive control. The following information illustrates the data format that is expected and returned by the drive when using the polled connection:

5.12.2 Poll Connection Command Data Format

Word#	Description
0	Drive Control
1	Speed Control
2	Network Input Reg #1
3	Field Reference Reg

(Poll connect on consumption size - 8 bytes)

The following data should only be sent in the poll command message if the drive is configured to accept control + config data in the poll command message. (See Section 4.2.)

- 4 Acce Time Out
- 5 Dece Time Out
- 6 Min Speed Out
- 7 Max Speed Out
- 8 Pos Current Limit %
- 9 Neg Current Limit %
- 10 S Curve Rounding
- 11 Trim Bange
- 12 Spd Loop PI Prop Gain
- 13 Spd Loop PI Lead Frg
- 14 CML PI Prop Gain
- 15 CMI_PI Lead Freq
- 18 GML Ref Rate Lim t
- 17 Jog Speed
- 19 Stop Type Select
- 19 IB Compensation
- 20 Current Compounding
- 21 Ntwk Loss Action
- 22 Niwk Out Reg #1 Sei
- 23 Ntwk Out Reg #2 Sel
- 24 Ntwk Out Reg #3 Sel
- 25 Feedback Select

(Poll connection consumption size - 52 bytes)

5.12.3	Pol	Conno	ction Rep	ly Data Format	ŝ
	72322	10.55	6028	103233	

Word #	Description
0	Status word
t	Speed reference
2	Speed reference sum
3	Speed Feedback
4	CMI feedback
5	Network Out Reg #1
6	Network Out Reg #2
7	Network Out Reg #3

(Poll connection product on size = 16 bytes)

The following data will only be returned in the poll reply message if the drive is configured to return control i config data in the poll reply message message (See Section 4.2.)

- 8 Fault Bits 1
- 9 First Fault
- 10 Alarm Bits 1
- 11 Last A am
- 12 Contral Source

(Poll connection production size = 26 bytes)

CHAPTER 6: ELECTRONIC DATA SHEET (EDS) FILE

6.1 General

6.1.1 Provided with the option card is a diskette containing an Electronic Data Sheet. The Electronic Data Sheet is for use with the DeviceNet Manager Software. The software (which is used to configure a DeviceNet system including the DeviceNet Scanner) is typically used in PLC applications. The EDS file included with the option card provides important information to the software regarding the DeviceNet interface to the drive.

6.2 Installation

1. Before installing the EDS, the DeviceNet Manager Software must already be installed. Run the DeviceNet Manager software. From the Utilities Menu, select "Install EDS Files.".

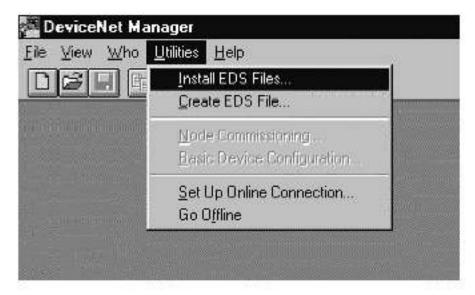


Figure 6.1

2. The following menu will appear:

ile Name	Discretories.	OK
ads.	c:\dnebug:	310/05
	E 200 V	- Cared
	🔄 disobingt 🔄 evis	Holy
	🔲 🚰 tyranna	
	🔄 gy 3kdemo	Network
	E lied	<u> </u>
0 of 0 Selec	м	Schut Al
List Files of Type:	Drivera.	_ [
EDS Files (* eds)	ste o: ns-dos_6	Unselect All
Filenane,		
Vendec.		
Cetalog Num		
Persiont Name		
Najor Revision:		

3. Select your diskette drive (A or B), and the following file will be listed:

file Hame. * eds	Directories.	UK.
1.ads		E Cancel
	8 8	Holp
	8	Ngtwork
	Selected	Subas All
List Files of Type EDS Files (*.eds)	Daiven	Unrelect All
I deneme:	1.105	
	Relance	
Verska.		
	50004021	
	50F04021 FleePak 3000 Digital Df. Drive	

Figure 5.3

4. Information regarding the file is shown in the lower portion of the screen. Select the file named "Lods" and press "OK". The DeviceNet Manager software will now install the EDS file to the appropriate directory on your hard disk drive.

6.3 Using the EDS File

1. Now that the EDS file is installed, the Reliance FlexPak 3000 DC Drive is added to the list of available DeviceNet products. In the example below, a project named "Press Rm" and Network named "Blanker" is open, and the only device currently added to the network is a SLC 500 DeviceNet Scanner module.

PERSONAL PROPERTY AND ADDRESS OF		111
Preset News, PELL, 14 Encode	Restortion Rest	-
And Design of Long Composition		Madi Rom
Contra Ruster	Perinto Tanto	

Figure 6.4

2. To add a Reliance FlexPak 3000 Variable Frequency Drive to the network, press the "Add Device" button, and a list of DeviceNet devices is recalled.

stwork: BLANKER Janua Type		05	Canerd	Help
ADD Antitick Lynes) AC Drive Anning Toput Nordale Anning Toput Nordale Barcate Scanner CNE CNE Communication Adopter	-	Hode <u>Address</u> Node Hane: Hode <u>D</u> escription	° ⊻l	
)oduci Vendor	Poduct Barre		Maya Basican	
Allen Bradley Company Allen-Bradley Company	SNP 3 24 to 1 SNP 3 24 to 1 SNP 3 704 to SNP 3 24 to SNP 3 24 to 1	100A 304A	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	
Catelog Number 1203-0		Desire Type	SEANpart Device	

Figure 6.5

3. The list is in alphabetical order by Vender. Page down to the "R's" and the "Reliance FlexPak 3000 Variable Frequency Drive" item is available for selection. To add a FlexPak 3000 as Node 1, select the FlexPak 3000 item, change the Node Address to 1, and press "OK". Press "Cancel" when finished. The FlexPak 3000 will now be added to the list of devices on the BLANKER network, as shown in Figure 6.6.

Figure 6.6

7. Double-clicking on the FiexPak 3000 item brings up the "Enhanced Mode" screen, showing a detailed data listing of the FlexPak 3000 parameters. There are three groups of parameters which may be listed, *Tune/conig, Control/rei/IO*, and *Ali Parameters*. The listings are just for conveniences. Selecting a list with the software has no effect on how much data is sent to and from the drive. That can only be set through the FlexPak 3000 keypad, Parameter P.061.

evide Ce	onliguiation - Enhanced No	de			
P	lode Name:	N	lode Addie is: U		Close
Pm	Vendor: Heitance duct Name: FlordPak 3000	Digital DC D	live		Help
	Description	646-646-5			
Devi	ce into			Set to D	etauks
'eramete				Nodiy Par	aneta.
	Stalus: Default Valu	10.0	Parameter Group	Start W	ontor :
Num	Name	Value	[Al Paramaters]		
18	Onec Status			Luad fan	a Fik:
28	Spearl Releases	a		1 and ince	Dealers
3U	Speed Rel. Sum	U.	100		1 LONGILLA
4H 50	Speed Feedback CML Feedback	0	5.0	a second s	11.2.2
			124	Save hi	File
6H 78	Network Dut Heg II1 Network Dut Heg #2	8	0		
00	Natwork Dut Reg It.)	a	0	715 FFM	Finvice.
201	I mult lists 1	101000-000	00 0000 0000 👘 🗋		
IDB	First Fauk	0		Puni to Le	and I die

Figure 6.7

8. Double-clicking on a Parameter brings up further information. Double-clicking on Drive. Status brings up the following information in Figure 8.8:

Parameter #1 HEADUNLY Dove Status Status Office Configuration		Cheg:	
Sollingy Bit 0 Drive Deady 1 Drive Banning 2 E Find Action 3 Dag Made 4 E Beverte 5 Director 5 Director 7 Damits Action 7 Damits Action 10 Director 10 Director 1	Ha 0 Maseri Active 9 Mine Concort Lanti 10 Cased ADR Instanting 11 Customer Intestock 12 Parameter From 13 Feet/Act input 14 ActuAtion and and 15 Fould resistingout	Lucil Ione Dev Joersta Devis Stort Manifes Param Help	
Internal Value		<u>ileip</u>	
0x0000	Hexadecinal -		

Figure 5.8

9. This is useful in interpreting all the parameters that are accessible over DeviceNet. In the case of "Drive Status" if details the meaning of each of the 16 status bits. If also shows that "Drive Status" is a Read-only parameter.

6.4 Data Mapping

6.4.1 Mapping FlexPak 3000 DeviceNet data to the DeviceNet Scanner is accomplished through the configuration of the scanner. See the documentation for your DeviceNet Scanner for details on that process.

APPENDIX A - FLEXPAK 3000 PARAMETERS

Appendix A contains Tables A.1 – A.4 covering register assignments for DROP_1 Area through DROP_4 Area.

DeviceNet	Muster Read Register		Parameter Name	HexPak 3000	FlexPak 300
Attribute #	Reg ≠	Hil *	š	Description	Parsimeter f
Reatine Sign	1 Data				
0	0			Etrivo Sum s Werd	
				Du packed wood containing information on the present status	
				ar the crive.	
				Drive ready	
		20		Drive maring	
		2 4		Fault activa	
		23		Etrivo jogenza	
				Forward-Reverse command (0-forward, 1-reverse)	
				Drag stopping	
		6		LunaXient 3 input on the loophosk. (II-th added, I-enrollad)	
		7		Tone/Config update synchronization flag loopback	
		\$		Alarm active	
		9		En current lanit	
		104		Const4DH and lock (R-apan, I-crosor)	
		11		Distance interfaces (91-square 1-closed)	
		12		Paracheter processing error - (Deno en ork, beord or here	
				स्वाध्य डो	
		13		Terminal block forward/teverse input state [CTIs 5]]	
		14		Lenin fal block automariaa (ngal state (CFIs-6)	
		12		Terminal block fault/dame caset i pathoria (CTR-D3)	
ា	ar		SED SOURCE:	Selected speed/voltage Loop reference value prior to any	P. 93
			SELEXT 50. F	hinding and signal conditioning	
				(4095 å TSP 8M 9D);	
4	3		SPD LOOP	Speed/Vollage loop reference value atta all finiting and	P 293
2025			RETERENCE	signal conditioning	
				14095 at 1509 SM 140;	
3	1		SPDTORM	Raw quasivoltage liney- and evel with sational scaling	12.20%
			FEEDBACK	1/ DPS JU TOP SPEED"	
3 4	4		SPD LOOP	Speed/Voltage incploutput value	P.299
			CRITPHI	(4093)) MAXIMUM (CURRENT)	
5	13		ARMATURE	Amature voltage fordback velteration all scaling,	P.289
			VOLTAGE	and prior to IR compensation	
				14095 M MOTOR RATED ARM VOLTS:	
6	n			Circuit neuerfoor toalback averaged oon 8 CML seaus	
				(* 095 s.: MAXIMUM CURRENT)	
7	5			Network Durpat Register 1. Volue of the parameter selected	
				BY NETW DUT REGI SELECT	

Table A.1 - Register Assignments for DROP_1 Area (continued)

DeviceNet		ad Register	Parameter Name	HexPak 3000	FlexPak 300
Attribute #	Reg #	Kit *	1	Description	Porsmeter 4
	Participant.	200 2 0			
Rundme Sign:	a Dua 2003	nued:			
*	s			Network Gurph Register 2 Value of the publicle selected by	
				NETWOLT REGUSELECT	
9	9			 Notwerk Output Register 3 Value of the perameter selected by NOTWOUT RESE3 SIGLECT chable. 	
Contiguration	and Storas D	ara		STATE OUT REALS STREAM TELESC.	
2	n fan skiele				
10	10			Fault Latch Bits Word 41	
				Du-parked word indicating latched faults AC incomposition later	
		-0 -1		AC line synchronization loss Motor shunt field as to 1 have	
		÷		Sustained over lead	
		7		Self-coning tank	
		4		Mouer thermosial imp	
		2		Controller thermostatory	
		6		Hower motor watter open	
		7 8		Open armature cirecti	
		25		Instantaneous dentatione overeniteral	
		102		Overspeed/everyolis.go Open SCR	
		11		(RESERVED)	
		12		Tochandia loss	
		12		OEM communication loss	
		ñ		Network communication less	
		15		(RESIRVED)	
0.92	11			Fault Loren Bits Wood 43	
ш	500			Bu-packed way' indicating (atches) faults	
				(all bits reserved)	
119220	20				
12	12			I mult cade of the first fault that occurred after the last fault	
				(reset)	
13	13			Alarm Latch Bits Word	
0.550	2.5			Hir-parted work containing latebox, alarmin is	
		- 12		Meter brush wer flow	
		1		ACTIVE voltage C90% of NOMINAL ACTIVE VOLTS	
		3		AC line volume > 115% of NOMINAL AC LINE VOLTS	
		3-15		(RESERVED)	
14	1-			Ale creada of the most opart inform	
15	15		CONTROL	Selected our rol source	P.003
	2101		SOURCE SELECT	(0-serininal block, 1-keypad, 2-serial part, 5-network)	
16	16		ACCELERATION	Minimum line in occalents from zero speed to	P.(01
			BATE	TOP SPEED (sea ads * 10)	
12	17		DECELERATION	Minimum times to developate trem.	P.002
20220	92 9		RATE	TOP SPICED to zero speed (seconds 7-10)	0-1993 BIG
18	18		MINIME MISPEED	Taward operating group (8PM)	P.003
19	19		MAXIMUM	Highes, operating speed (RPM)	P.001
0.52	25		SIEED	and the second se	-3655

Table A.1 - Register Assignments for DROP [1 Area (communed)]

DeviceNet		ter Read Register Porumeter Nume	FlexPak 3000	FlexPak 300	
Attribute #	Reg ≠	Hit #		Description	Parsimeter
funcê û - Car I (contaceaf)	iguration saf	Steins Deta			
20	20/		POSITIVE CURRENT LIM	Highest level of motion g current (% of MOTOR RATED ARM AMPS)	P.005
21	31		NEGATIVE CURRENT LIM	Elights, level of regenerative current (% c/MOTOR RATED ARM AMPS)	P.005
22	22		TRIM RANGE	Determines how much the trip reference will affect the space (∞) age long ratio more (∞)	9.109
2.8	23		SID LGOP II. PROP GAIN	Speed loop IT proportional gain (gain "OP	P.211
34	74		SPD LOOP P LEAD IREQ	Specific op PL bad break (freq carry (adis_gaseend 4-100)	P.212
25	25		CML PL PROPIGAIN	CML PI propertional gain (gain = 1000)	6.30
26	26		OML PI LEAD IREQ	CML PLicad break frequency (radionessecond)	P.302
27	27		CMUREERATE LIMIT	Minimam ti ne to chi ige from sero to fulli letri or rature nur is (mill statudy)	P.507
28	28		AMXNETW CONNECT TYPE	AlleMax network connection type 04-BASIC, 14-DULL)	P.910
39	38		NETW COMM LOSS SELECT	Network communication has achieved (0=hulo, 1=hulo has ref., 2=use (aminat Nock (af.)	P.901
.50	30		AMX NETW REP SELECT	AutoMax actwork reference selection (0)-directed, "0" -b volcast register "1" where $\gamma (1-3)$	P.911
31	31		REGULATOR SW VERSION	Regulstor board softward version number	P.791
Mostal Wirtel	ಲ್ಲೇಕಾಯ	r >02Refercue	Dea		
32	ч	0 - 2 - 4 5-6		Sequencing control word Run (0 to 1 transition to run) Stop (0-stop, 1-cort stop) 1 autoreset (0 to 1 transition to reset) log (0 to 1 transition to (og. (=stop), ogg. og) Eval/Rus select (0=forward, 1=resetse) (EESERVED) Cuter control (cop chable	
		; *		RI-hele OFT, excess; 1-OCL enabled) Fault log slot -& result (3 to 1 th - advants dear)	

Table A.1 - Register Assignments for DROP-1 Asso (combined).

DeviceNet	Master Re	ud Register	Porumeter Nume	FlexPak 3000	HexPak 3000	
Abirlionte à	Reg∉	Bil #	1999-1990, 1973-1986-2013-200 19	Description	Parameter f	
		0.000000000				
Cound/Ralese						
(.52)	(32)	9		Alarm log clear & reset (0 to 1 ministion to clear)		
		10		Altern reset (0 to 1 transition to reset)		
		-11		Mamory says (0 to 1 musicion to says)		
		13-13		(RESERVED)		
		14		TunsConfig Linux Enable		
		422				
				(0 = read Control/Reference inputs only from network.		
				 I = read all (Lur/Ref. Dure & Configuingues from network) 		
		1.5		TunaConfig.Upskie Synchronization Phys		
33	22			Network Reference:		
1.10.11						
				Speed/voltage loop or GML reference value used when		
				CONTROL SOL REF SELECT (Drap 1, eg. 15)		
				-NETWORK and AMN NETW REF SELECT (Drop 1, eg.		
				30) ±194-095 st TOP SPEED/ MOTOR RATED ARM		
				VOLTS of MAXIMUM CURRENT)		
.54	24		NEWGRKUNPUT	value used when switch selection		
2000	0.000		RESERTER 1	NETWIN RISE is chosen		
12220	10.201					
35	33		NETWORK INPUT	Value used when switch selection		
			REGISTER 3	NETW IN REG 3 is chosen		
36	34		NELWORKINPUL	Value used when switch selection		
1000			REGESTER 2	NETWIN REGIZischwart		
			MAT IN N.	CITER CONTRACT AND A R		
.57	27		TIELD REF	Field Cleren, Loop reference value (4095 at MOTOR	P.513	
			REGISTER	RAIED ILD AMPS!		
38 - 39	78.59			(RESERVED)		
Tunable Data						
40	40		ACCELERATION	Minimum lime to accelerate from		
	162.5		RATE	zero speed to 1 OP SP(10) (seconds 7 10)	P2031	
				reading reasons to manifester.		
41	-11		DECELERATION	Minimum time to developate them.		
			RATE	TOP SPEED to zero sheed (seconds * 10)	P.002	
42	42		MINIMUM SPEED	Lowest operating speed (RPM)	P.(C) i	
43	12		MAXIMUM	The barrier and the second spin P	B 302	
4.0	0122		SPEED	Elights, operating speed (RPMP	P.00*	
44	44		POSITIVE	Fights level of motoring current	P/E15	
			CI BRENT LIM	(Second Cill Carl remains arrive)		
45	12		NECOTOR	Chicken Invel of second strains	P.005	
45	45.		NBGATIVE CURRENT LIM	Elighes, level of regenerative current (% more rall, ead armature amost)	1.0.02	
				ana ana ana ana ana ana Sana ana ana ana		
16	46		S-CUBVE	Adjusts the summation sensething of the spand/ord sign	P.(114	
0.0200			ROUNDING	leep talavane (3)		
			TRIM RANGE	Determines how much the trip reference will arfeat the	in come	
C # 401				Listernulues now builts for the chemister will drive from	P.139	
47	47		TRUST BOL IVIL	specifier rage loop rate note (%)	Course of	

Table A.L. Register Assignments for DROP 1 Ares (continued).

DeviceNet	Muster Ro	ad Register	Parameter Name	FlexPak 3000	HexPak 300 Parameter A
Attribute #	Reg∉	Hit #		Description	
Secol/Roles	enor Datal (o	antin (a')			
48	48		SPD LOOP P. PROP GAIN	Speed Icop PI proportional gata (gata 7 100)	P.211
49	-19		SPD LOOP P. LEAD IREQ	Speed loop (?) lead break fragmency (radians/second = 100)	P.212
50	50		OML PI PROP GAIN	CML PL properties all gain (gran * 1008)	P. 501
51	51		CML II LEAD TREQ	CML II lead break frequency (radians/second)	P.302
52	3.5		CMU REFRATE LIMIT	Manipure function d'ango franczeracia fi 11 fosobarnostore comps orcifilise a solog	P.803
33	a. 3		JOG SPLID	Reference value used that ng jogging (RPM)	P.012
54	* 4		STOP MODE SELECT	Otomp Attantialy and Incel State and Inci	P.11-
33			IR CDMPENSATION	Armature voltage less compensation (% full load omp\$)	P.205
56	26		CURRENT COMPOUNDING	See the level of current compounding (%)	P.209
57	57		NETW COMM LOSS SELECT	No work communication loss advertion (0=lault 1=) add last ref. (2=bas forming block of)	9.901
58	58		NBIWOUT RESET SELECT	Number of the parameter whose value will be readable in Drap 1, register V 04-metror speed (r. RFM)	P.902
59	20		NETWORT REG 3 SELECT	Number of the premierar where where will be realishe in [Prop_1, register 8 (0=sm atm 2 voltage in volta)	P 903
60	(à)		NBEW OHL REG 2 SELECT	Number of the palameter whose value will be readable in Brap 1, register 9 (Erst intrue of the final inpo?10 to surps)	P.5034

Table A.1 - Register Assignments for DROP_1 Area (continued)

DeviceNet Attribute #	Muster Re	ad Register	Porumeter Nume	FlexPak 3000	FlexPak 3000
	Reg ≠	Bil #		Description	Parameter †
Cocligated on	Cata				
401.5	ć.		TEEDBACK SELECT	Speed/Vollage loop feedback selection 19-armaune voltage, 1-DC analog tach, 2-polyemen, 3-AC analog rach)	P.200
62	62		AMX NETW CONFECTIVE	AnniMax network connection type (S=0ASIC, 1=FULL)	P.910
63	63		AMS NETW REF SELECT	An office network reference selection $(0-directed, [n]-h)$ values tregister $[n]$ where $p=1, S$	P911

Inhle A.1 - Register Assign vents for DROP 1 Area

Device.Net	Master Read b	legister Parameter Name	FlexPak 3080	FlexPark 300
Attribute 2	Reg #	Bit A	Description	Parameter A
	10			
Renome Sign:				
64	0	ANALOG AUTO	Analog auto reference input value artenall scaling	P.1SS
		REFERENCE	(4095 a) T20P SPFED;	
22	200		27 <u>- 28 - 29 - 29 - 29 - 29</u> - 29	
63	1		(BESERVED)	
23	36	(6. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		13333
66	-	ANALGIG MAN	Analog manual trin: reference input value arter all secting	P.194
		TRIM REF	(4095 at TSPESPEED)	
67-74	3-10		(RESERVEC)	
		200 4 200		
	eguritticu, e el Sta		25 - 25 - 21 - 1 - 21 - 21 - 12 - 200 2 -200 2 - 200	11.112.4
75	n	CCT. R A MP	Outo Do trof Loop ratemas velaciatta a Di nitrig (4395)	P.845
		(SUIDIII.		
		OCT OPPERATE	Contract Contract Theory of Contracts Contract Time By	
26	12	OCL OUTFUT	Outer Control Loop output value (RPM)	P.S S
-	15	TOP SPEED	Fights: optioning speed (RPM)	P011
77	C-1414	2 De an Serbicit	eiling shrannii daya tarait	1.1.1.1
78	1	JOG SPILLE	Reference value used while jogging (RPM)	P.012
19	1.0	100 1101	to produce where uses where lot that the party	1.012
79	15	196 ACCRD	Minimum accel and data it inclused while logging	P.01375
19	Tree-er-	DECEL RATE	(scends 7.12)	CAU.
		Later Bate	TRASHUS / Lat	
80	16	SAURVE	Adjusts the amount of smoothing of the speed/vol.age	P.01
100	- T	ROUNDING	loop reference (%)	
		NOT DE LO		
SI	17	REVERSE	Playents creativeltage segmeters as homige costing	P.015
2.5		DISABLE	a negativo value	
		0	Cubioborrel, Impositive ret	
82	18	AND ALLO	Selects the type of analog data reference signal for proper-	P.103
		SIGNAL TYPE	sealing.	
			(0=0-10 V; 1=40-10 V; 7=4-70 mA; 3=10-70 mA);	
8.5	19	ANLC AUTO	Analog auto reference extra a/i s.	P.101
		GAIN AE0		
84	20	ANL/SALLO	Analog natural reference (and ritialog cromad true reference)	P.102
		2FRO ADI	granding	
85	21	AUTO	Selects the type of auto ref.	P.103
		RETERBACIS	(0- analog, 1- frequency)	
		SELECT		
86	22	ANLC MAN REF	Analog manual reference (and scalog manual trim reference)	P.13-
		GAIN ADJ	štiu vijas	
22	80			243350
87	-23	ANUS MAN REP	Analog, manual rate more (and a rateg morear) itum rate more).	P.105
		ZERO ADI	ano adju s	
10.2	19429	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		200000000
88	2*	TREM REF	Trimreference value	P.107
		REGENTER	13 TOP SPLED 7 135	

Table A.2 - Roy etc. Assignments for DROP 2 Asso (examinantly -

DeviceNet	Muster Re	ud Register	Parameter Name	FlexPak 3000	HexPak 300
Attribute a	Reg.₽	Bil #	200720.0220060200200 2	Description	Parameter :
Tousède: Cael (contraced)	Iguration es	1 Status Data			
89	25		TRIM REFERENCE SELECT	Frim reference select (0=-apistor) I=-malog manusly 2= anslag in 1; 3=active in reg 1, 4=analog au 2: 3,5=active in reg 3,3)	P.138
911	2G		TRIM MODE SELECT	Trim mode saleer 01-10 til v. I-bierenierra , 2-proportiona ;	K113
91	37		AUTO MODE MIN BYPASS	Minimum speed limit bypass while in suco mode	P.JII
		0		0-min speed applied. 1-min speed hyparaed	
92	38		AUTO MODE RAMP DYPASS	Rate limit block $\{y_j\}_{j \in \mathbb{N}}$ while in onto mode	P 112
		0		0-cate limit applied, 1-cate limit loppas sed	
43	29		STOP SPICED THRESHOLD	. Speak at which the main contactor will drop our domigin to α , given that some RPMs	P.113
94	30		STOP MODE SOLICI	Stop mode selver (0=ramp, 1=const/dynamic braking, 2=current h m(1)	P.11/
95	21		тим онтри	Actual argued used to this other activated specal/contains deep reflected (1063 at TOP SPEED)	P.197
Master Writel	Regi vers				
Go to Allales	nuar Data			(NONE)	
Tunable Data					
96	32			(RESERVED)	
97	23		NORMALIZED INERTIA	Combined incryis of moser and lead (seconds*10)	P.222
48	.14		GCLREF REGISTER	Onto Tronto Loop reference used when OFT REFERENCE SETECT - RECENTER (48:5)	P.S01
99	25		OCL REF RAMP TIME	Minimum amount of time for OCL reference to change from 0 to 1095 and 1095 to 0 (seconds* 10°	P.802
100	*G		OCLREF ROUNDING	Adjustative commutative coefficiency of the Outer Coercid Lower references (%)	P 835
1111	35		OCLUBADLAG SELECT	Unler Control Loop leading block select n1-lead/lag, 1-hypossoc; 2-leaderead;	P.S35

Table A.2 - Register Assignments for DROP (2 Associations).

DeviceNet	Master Read Register		Parameter Name	HexPak 3000	HexPak 3000
Attribute #	Reg #	Bit #	and a server solver to a solver.	Description	Porsmeter #
Tunable Data	(cootinueć)			•	
1112	38		GOLLEADLAG LOW FREQ	Unitar Lourney Loop, coddiag black, ow brack riequancy (radio of so-rank 1989)	P.S35
103	39		OCLEBADLAG RATIO	Specifies the ratio of lag to lead or lead to big break . frequencies	P.807
104	41)		EIG ACCEL7 INDCEL TIME	Microsoft rest and direct time used while, sigging (seconds * 13)	P.013
105	41		ANLC AUTO GAIN ADI	Analog auto reference gain adjust	P.101
106	43		ANLC AUTO ZIBRO ADI	Analog autor of more zero acjus.	P 102
107	43		AULD REFERENCE SELECT	Selects the type of auto-reference (0=molog: 1=0replaney)	Р.19.3
3118	44		AN 16 MAN REF GAIN ADJ	Analog manual teterates (and a rate phronial limit reference) $g(\tau)$ adjust	P.104
109	15		ANLC MAN REF ZERO ADJ	Analog manual reference (and snalog manual trim reference) zero adjust	P.105
110	46		TRIM REFERENCE SELECT	Trimiteliae ve oder (0=ansing manuel 1=ansing nim 2− nimitegister 3=actwork trimiteran Drop 1, reg. 34)	P.108
111	42		TRIM MODE SELECT	Trim mode select 10- ac Li v. 1 - incremental, 2- groportional)	P.113
112	15		AUTO MODE MIN BYPAS5	Minimum speed limit bypass while in sitio mode.	Р.]]]]
		14		R-min speed applied. I-m a speed hypassed	
113	42		AUTO MODE RAMP DYPASS	Rate light, data by was while in into reade,	19112
		Ģ		0-cate limit applied, 1-cate limit bypassed	
114	50		STOP SPEED THRESHOLD	Spear at which the mana contractor will showed during a contralled step (RPM)	P.11 S
115	52		OCL PUPROP GAIN	Outer Control Loop Pf black propertional gate (gate*10.0)	P.808
116	11		OCL PLLEAD FREQ	Outer Green / Lance Phillerk feed breek heapens y (radish@second/100)	р каа

Table A.2 - Register Assignments for DROP_2 Area (continued)

PAGE 42

DeviceNet	Muster Read Register		Parameter Name	FlexPak 3000	HexPak 3000
Attribute #	Reg ₽	Bil #		Description	Parameter #
Touside Dera (contracted)					
117	53		GCL PEPOSETIVE LIMIT	. Only Loop of Loop PL block positive limit (\mathfrak{B})	P.S13
118	54		OCL PI NEGATIVE LIMIT	Outer Centrel Leep PI block networks Emit (%)	P.311
119			COL TRIM RANGE	Present control OCL output will have on Speed/Vollage Loop reference (%*10)Contigaration Data	P.812
120	2 6		INERITA COMP SELECT	Inertia compensation select 01-cons: 1- const 5.2.3-suntag in 1.2: 4.5.6-acts in ray 1.3.3)	P.221
121	57		POS CURRENT LIM SBL	Selects positive current firms source (vi-register) 1,2-analog in 1,2: (14.5- octw in reg 1,2.3):	P.223
122	58		NEG CURRENT LIM SEL	Selects negative concert limit sources (0=register: 1,2=onales in 1,2; .1,4,5=oetw in reg 1,2,3;	P.22*
123	59		OCLREFERENCE SELDCT	Selects (SCI, referencessories, (0=cregister; 1,2=onaleg in 1,2; J=thequency in; 1,5,6=netw in reg 1,2,3)	P.803
124	60		OCL FEEDBACK SELECT	Selects (XC), lead set source (0+CML leadback, 1,3-setslag on 1,7)	P.334
125	60		TOP SPEED	Elighes, operating speed (RPM)	P.011
126	c_2	Ō	REVERSE DISAREE	Provents Speed/Veltage loop reference from generating a regenitie value C=bipolic ref, 1=positive ref	P.015
127	a		AML5 AUTO SIGNAL TYPE	Selects the type of availage satis reference signal for proper scaling $(0{-}0{+}10~V, 1{-}(410~V, 2{-}4{-}20~mA)$	P.103

Table A 2 - Register Assignments for DROP 2 Area

Theyine.Net	Master Read Register	Parameter Name	FlexPak 3080	FlexPack 300
Attribute a	Reg # Bit A	3	Description	Parameter A
Rome me Signa	JDua	012 22		0.0

128	18	ANALOG TACH FEEDBACK	Analog tachores of Costlack signal after all scaling (4095 at TOP SPEED)	P.291
129	1	PULSUTACH FEEDBACK	Pulse far formerer feedback signal (4095 af TSP SM 11D)	P.292
130	3	SPD LOOP ERROR	Speed/Voltage leep erret value	P.297
131	3	CMI, REFERENCE	On real managements while offer all funiting (4095 of MAXIMI M CURRENT)	P. 595
132	4	FIFI D RETERENCE	Field Clement Later reference value (* 095 % MOTOR RATED FLD AMPS)	b 293
133		FIEDEACK	Field current reedback value (4095 of WOTOR RATED FLD AMPS)	P.589
134-139	6-11		(RESERVED)	
Luussie, Cort	egurarien and Slatus Data			
140	13	MASIMUM CURRENT	Ciplus, amount of current, eitherpositive or acquitive (% MOTOR RATED ARMATURE AMPS)	P/007
141	12	MOTOR RATED ARM AMPS	Roted arout the simple form motor correptote for $\eta \approx -10 \mu$	рукіз
142	14	MOTOR RATED ARM VOLTS	Rated armes are voltage from motor using/ate (volts DC)	P/009
143	15	FEDBACK SELECT	Spear/Voltage loop fördhack selastion (Geometrice voltage: 1=DC analog fact, 2=9, Isotach, 3=AC snalog (ach)	P.203
144	(6	ANALAXI LACH GAIN ADJ	Analog tachemeter reedhack ga n adjust	P.201
145	17	ANALOG TACIJ ZERO ADI	Analog tachometer fordback zero adjust	P.202
146	81	ANLISTACH VOLTS/000	. Ratial volts pre-1000 RPM from the markey tachence is no neplate $\{\phi, \phi, s^{(2)}, B\}$	P.205
147	19	ARM VOLTAGE GAIN ADJ	Armature voltige feedback give adjust	P.201
148	30	ARM VOLTAGE ZERO ADJ	Armature webspectizelikaele zero radjust	P 205
149	21	IR COMPENSATION	A mature voltage less compensation T% full load nmp%	P.235

Table A 3 - Register Assignments for DROP 3 Aser (estimated)

DeviceNet	Muster Read Register		Parameter Name	FlexPak 3000	HexPak 3000
Attribute #	Reg∉	Bil #	Contrast series and the series of the	Description	Parsimeter #
Tuushie: C.e.J (contraced)	lguession sud	Status Data			
150	22		PULSE TACH PPR	Pulses per revolution from the pulse rachameter nameplare	P.207
151	72		PULSE TACH QUADRATURE	Polso tachomore quist'esture deciede casèllo	P.208
		-1)		R-post-quad, decode, 1-quad, secode	
152	24		CLERENT COMPOUNDING	Sets the law, solution is a comparabiling (\mathbb{R})	P.239
153	25		SFD LEADLAG RATIO	Specifies the ratio of lag in lead of lead to lag inexts frequencies	P.213
154	ч г		SPOLEADLAG LOW IRBQ	Specif Voltage heipsheid N ₂₀ black low break theparty y (tathen esseend § 166)	P21+
155	23		SPD LDSP LAC FREQ	Spear/Voltage loop log block bread fraquency (radio-elsected 2 100)	P.215
156	28		SID LEADLAC SCLUCT	Speed/Voltage loop leading block select 101–lead/log, 1–bypassed, 2–log/load)	P.215
157	29		SPD LOOP LAC BYPAS5	Specif/Ved age hopelog block by ass	P.217
		0		0-not bypassed, 1-bypassed	
158	20		CML FFFDBACS GAIN AD1	CML fæillrick gemär (av	P.403
159	22	1000	ARMATURE BRIDGE POL	Active annualize bridge	P.591
		- 0.		B -forward, 1 - eversa	
Master Weile I	Roginan				
Control/Refex	ance Dara			(NONE)	
toor is drive					
160	22			(RESERVED)	
161	20		HELD FODVOMY Ref	Fisher excerning current level (% or MOTOR RATED FUS AMPS)	P.511
162	31		TIELD PI PROF GAIN	Field Claren: Loop PI block proportional gain (gain*100)	P.51
163	**		FIFLD PI LEAD IREQ	Field Clement Loan PLMack level from energy (radistic/second/100)	P 515
164	36		HED FEEBACK GAIN ADJ	Field current reedback gain adjust (gaul: 1000)	8.51a

Table A.3 - Register Assignments for DROP_3 Area (continued)

DeviceNet	Muster Re	ud Register	Porumeter Nume	FlexPak 3000	HexPak 300
Abtribute a	Reg ∉	Bit #		Description	Parameter 1
Tousible ds a (contraced)					
165	33		H.D WEAKEN THRESHOLD	A mature voltage or CEMP at which field current begins or a itematically wreken (with DC)	P.518
166	28		FLD WEAKEN PROPIGAIN	Field weaken PI block propertional gain (gain*104):	P.512
167	392		FLD WEAKEN LEAD IREQ	Field weaken P1 block Loud broak Cosponey (radiens/second/0100)	P.523
168	49		ANALOG FACE GAIN ADI	Analog tachemeter feedback gath adjust	P.231
169	41		ANALOG FACH ZIRO ADI	Andog tachence in Taylhack acrossoffers	P 202
170	42		ARM VOLLAGE GAIN AD1	A mature voltage feedback gain adjuw	P.204
171	12		ARM VOLTAGE ZERO ADI	Armature voltage fortback zero adju s	P.205
172	44		SPDT FADLAG RATIO	Specifics, the national lag in han or hear its log-reads Evquatelies	P.213
173	43		SED LEADLAG LOW FREQ	Speed/Voltage loop lead/lag block low break frequency fradii - esser of 2-1001	P.21
17:1	40		SPD LOOP LAC TREQ	Specificial species play block here's heap may readimensed of 100)	P215
175	47		SPD I CADLAG SFLECT	Spear/Voltage loop lead/lag block selart (Utfor/Jag: 1ttbypassal, 7th_s/badh	P.215
176	15		SPD LOOP LAD BYPASS	Speed/Vol.age loop lag block betues	P.217
		. 9		R-bot hypassed, 1-bypassed)	
177	15		CML ITEDBACX GAIN ADD	CML foodback gain while.	P.500
178-183	50.51			(RESTRATED)	

Table A.J - Register Assignments for DROP (i Area (commund))

DeviceNet Attribute #	Muster Read Register		Forumeter Nume	HexPak 3000	HexPak 3000
	Reg≠	Bit #		Description	Parameter †
Coeffiguration	dua				
185	5 5		MOTOR HUT HUD AMPS	Raled for field curvent from motor nameplate tamps*100;	P.513
184	36		FIELD LOSS THRESHOLD	Fash current level at which a field less fault is generated (4-of MOTOR RATED FLD AMP5)	P.512
185	57		HEID AUTO WEAKEN	Fnals ssål sables und föcklis med tweakening obenit	P.517
		0		(0-disable: 1-enable)	
186	58		MAXIMUM CLIRENT	Fights a not it alone out office positively negative (> MOTOR RATED ARM AMPS)	P/E17
187	54		MOTOR RATIN ARM AMPS	Rated armstate current from motor nameptate tamps (10)	PACIS
188	60		MOTOR RATED ARM VOLTS	Rated arms, are voltage from motor assumption (volts DC)	P.009
189	ϵ		ANUSTACH VOLTSZOOU	Rated volts per 1000 RPM from the analog tachemeter manaplate gents 3,100	P.203
190	62		PULSE TACILITR	Pulses per revolution from the pulse achometer nomeniture	P.207
191	14	12120	PUISE TACH QUAISBATURE	Pilise fan samster gan of an deserde samble	P-208
		0		Renco-qual decade tequal decade	

Table A.3 Register Assignments for DROT_3 Area

t

DeviceNet	Master Re.	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Attribute 3	Reg r	lift †		Description	Purameter 3
Runt me Signa	al Data				
192	0			DO Expansion Digital Jus	
				Du packed werd indicating state of DO Exp Kit digital inves-	
				(ons 0-4) state of cignal input 1-5)	
101			CONTRACTOR IN	NYA TANANYA MANANA ANA AMIN'NA MANANA MANANA MANANA MANANA MANANA	- 1 -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
193	4		ANTCINI	DO Exp Kit analog input 41 value after all scaling (4095 full scale*	P/92
194	2		ANTIFIN 2	12D Exp Kit anolog i iput ¥2 value after ali wolling	P.49 i
111	2			(4095 to 1 scale)	1.2.1
195	3		TREQ IN	DO Exp Kit frequency input value after all scaling	P. 91
			0.014446.0043	ir 095 full statel	
196-213	70			(RESERVED,	
Touside, Coef	iguestion and	Status Data			
213	21			Level Decleron	
410	5.0			Ritgradeed work indicating state of 40 mars	
				Lovel Date: outputs	
		0		Level Deusster Louiput	
		L		Level Detector 2 octput	
214	33			Storier assisted.	
				Bit-packed was' indicating the cases why depiction stopped.	
		0		Storrassental of Run required	
		1.1		Jog de assemed for ≥ 1 second	
		2		Loternal step request.	
		2245678		Ou reur limit stap.	
		4		Ramp stops	
		14		Const/DD stop	
		ć		Fault stop for Self-Tuning completed)	
		7		Customa futeriae a openad	
				Const-DH mallock apared	
				Muin costae la spellist	
		10-13		(RESERVEE)	
215	23		NUMENAL AG	Nominal A C line frequency 'Hz'	P.305
			LINE HREQ		
216	34		NOMINAL AC- LINE VOLTS	Nominal A-C line volters (volts RMS)	JP.307
	10			2220 (S. 2720) (Y. 01. 3225	
217	2.5		PLJ, MAXIMUM Error	Merennum change in Lite synchron zation PUL conject par AC Lite cycle (meet)	P 308
218	36		AC LINE	Measured A-C line voltage (volts RMS)	P.392
-14	~		VOLTAGE	Construction of the matter in the provide the second second second second second second second second second se	
219	27		ENFANCED FLD	Folia real field supply service graduation promotion	0.503
0000			VOLT AD		

Table $A\mathcal{A}$ - Register Assignments for DROP 4 Area (commund)

DeviceNet	Muster Re	ud Register	Forumeter Nume	FlexPak 3000	HexPak 3000
Attribute a	Reg₽	Bit #		Description	Parameter 1
Touside: C.e.J (contracted)	figuration vad	l Status Deta			
2211	28		FIELD EEDNOMY DFLAY	Amount of the herwise stapping and reducing field current to a current y-level (minutes) \ensuremath{c}	P.501
221	39		FIELD ECONOMY AUTIVE	Flag indicating whether or not drive is in field economy state	P.599
		0		8-ful field curver, "-rield acanemy across	
222	30		OPEN SCR SENSITIVITY	Open SCR detection sensitivity adjustment	P.600
223	88		OPEN SCR TRIPTHRESH	Open SCR cetes from top-threshold	9601
Master Write I	Registers				
Control/Rafes	ence Dara			INGNU	
Tuuside Data					
224	32		AN LUTIN T ZERG ADI	bD loop for analog laput τ^{-} zero adjust	¥.#14
225	22		ANLC IN I GAIN ADJ	DO Exp Kit analog input 41 gain adjust (exm*1000)	P/15
226	34		ANT JEIN 2 ZERO ADI	19) Exp Kat annhog i opat 42 zo rondjust	P.#16
227	25		ANLC IN 2 GAIN ADJ	EO Esp Kit analog input ¥2 gain adjust (gaan*1000)	P.· 17
23R	3 _D		LEVEL DETECT 1 THRESH	Lasel Dataenastica it Al thrashedd (3/10)	P-613
229	ä2		LBVDL DE DC P 1 DELAY	Level Derector circuit #1 de ay time (sceands*10)	P284
230	38		LEVEL DETECT 2 THRESH	Envel Deuxeur circuit #3 threshold (%-10)	P.605
231	20		LEVEL DE TECT 3 DELAY	1 avel Datce or constat #2 data y fond (carsuds213)	P.z.617
232	-10		PLI, MAXIMUM ERROR	Maximum change in line synchrotrization PLL curpts per AC line cycle (msec)	PLAIS
233	41		ENFANCED FLD VOLT ADJ	Fuhanceal field supply $\alpha((a,p,a))$ is present of	P.300
234	42		FIELD ELONOMY DPEAY	Time between stopping and reducing reducing field supply entput to ceanomy level (in put/s)	P.501

Table A = - Register Assign routs for DROP = Aser (estimated)

DeviceNet	Muster Re-	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Attribute #	Reg ₽	Bit #		Description	Parameter 1
Tuuxide Deta	(occimo')				
235	43		OPEN SCR SENSITIVITY	Open MCR celection sensitivity adjustment	P.503
236	11		OPEN SCR TRO TIBESII	Open SCR detection trip threshold	P.501
237	45		ANDEGU 1 GAIN ADE	0.0 kmp for analog curput $\sigma_{\rm i}$ gain adjust (gain $\tau_{\rm i}$ 0.0 i)	P.423
238	16		ANLC OUT 2 GAIN ADJ	DO Eap Kit analog cutput #2 gain (gain 1000)	₽/22
239	47			(RESERVED)	
Cooligin 9 Jan	Pata				
2411	45		12632.11 80483	 DO Exp Kit digital curput #1 source 2-LEVEL DEFECT 2 OUTPUT; 1-LEVEL DEFECT 2 OUTPUT; 2=in correct Luni; 3=Crive readh; 4-METW COMMINITATURS; 5-Dr n-1 of Network input Register 1, wisco = eligital output monder; (1 or 3), 5=5ct n-1 of Network Input Register 2, where t=digital output number (1 or 2); 7-by n 1 of Network Input Register 5, wisco = eligital output number; (1 or 2); 	P.=.34
241	49		EIG OLT ? SELLICT	 IzO Exp. Kit digital colput 42 succes 3-LEVEL DISTECT 1 OUTPUT; 1-LEVEL DISTECT 1 OUTPUT; 2-to current 1 mit; 3=bit envely; *=NETW COMM STATUS; S=ba n-1 of Network Input Register 1. w sore :=-digital output muniter(1 or 2); 5=bit n-1 of Network Input Register 2 w sore :=-digital output muniter(1 or 2); 5=bit n-1 of Network Input Register 2 w sore :=-digital output muniter(1 or 2); 7=bit n-1 of Network Input Register 3. where n=-digital output number (1 or 2); 	P-211
242	50	0	DIFOLUT CONTACT TYP	(2) Eq. Kit digital cutput \$1 contact type (0+manually open, 1+manually classi);	P.413
		F	DIC OUT 2 CONTAULT TYP	PO Esp Kit digital cuput #2 contact type (9-normally open, 1-normally closed)	P. 12
243	21		ANLC IN I SIG TYP	DO Exp Kit analog input 41 signal type (0=0-10V: 1=-/-10V: 2=1-20mA)	P/13

Table A.4 - Register Assignments for DROP 4 Area (continued)

DevleeNet	Muster Re	ud Register	Parameter Name	FlexPaix 3000	PlexPut: 3000
Attribute #	Reg.≠	Bit #		Description	Parameter t
Cociliganscia	n Data (centin	ali			
244			ANLGOLT I SELICT	 DO LEP KO SHALOG CUIPLET I SOLVE SELECT C. CHI, DELDBACK; I=CMI, REFERENCE; 2=CMI, ERROR; 3=SID LOOP TEEDBACK; 2=SPD LOOP REPERENCE; 5=SPD LOOP REPERENCE; 5=SPD LOOP ERROR; 5=SPD LOOP ERROR; 5=SPEED RAMP OUTPUT; 10=TRIM OUTPUT; 11=ARMATURE VOLTAGE; 12=ANALOG TACH DEEDBACK; 13=PULSE LACH DEEDBACK; 14=ZPRO; 15=FULL SETACH FOLDBACK; 14=ZPRO; 15=FULL SETACH FOLDBACK; 14=ZPRO; 15=FULL REFERENCE; 14=OCL, RAMP OUTPUT; 17=OCL, REFERENCE; 21=FUELD FEEDBACK; 23=NELW IN REG 2; 25=NETW IN REG 2; 	¥÷18
245	12		AND POIDT 1 SIG TYPE	DO Eq. Kit analog output All sogns' type (1=5-13V; 1+5-10V; 2=5-30 c; A)	P≐19
246	24		ANIA-OLT 2 SELECT	 DO LEP Ket unaling rulput 72 source select C.M.L. DE DIBACE; IC.M.L. REFERENCE; 2C.M.L. LEROR; 3SPD LOOP FEEDBACE; 2SPD LOOP REPERENCE; 5SPD LOOP ENROR; 5SPD LOOP ENROP; 5SPD LOOP ENROR; 5SPD LOOP ENROP; 5SPD LOOP ENROP;<	K421

Table A.1 - Register Assignments for DROP_1 Area (continued)

DeviceNet	Muster Re	ud Register	Porumeter Nume	HexPak 3000	HexPak 300
Attribute #	Reg ₽	Bil #		Description	Parameter #
Coe lignestion	Data (contin	-effi		LC DOUBLE OUTPET	
				15-POWER OUTPUT:	
				17-OCL RETERINGS	
				1S-OCL KAMPOUTPUT,	
				19-OCI. FFFISEACK	
				20=OCL OUTPUT;	
				21=FIELD REFERENCE;	
				22-DEDD DEBDRAUK	
				23-XEEW IN REG 1:	
				24-NETW IN REG 2.	
				25=NETW IN REG 3)	
247	33		TREQ IN ZERO	DO Lap Kit frequency that corresponds to digital zero (0Hz2103)	P.: 23
248	56		FREQ IN	DO Exp Kit I concrety input Perposity that is receiverable to	
100			FULL SCALE	digital 40303 (EEse 100)	P 474
249	24		EREQ OUT	DO http://www.augur.cource.select	P.4-25
			SELECT	3-CML DEDBACK;	
				1-CMU REFERENCE:	
				2=CML ERROR.	
				3=SPD LOOP TEEDBACK;	
				4-SPD LOOP REPERINCE;	
				5-SPD1 (S)P ERROR;	
				5-SPD LOOP OF TPUT,	
				7=SPEED RAMP OUTPUT;	
				S-SPEED RAMP INPUT TP:	
				3-SPD SOURCE SELEXT OUT:	
				10-TRIMODUPIU.	
				11-ARMATURE VOLTAGE	
				12=ANALOG TACI: TEEDDACK:	
				13-PULSE LACH PEEDBACK;	
				14-22-RO.	
				15-FULL SPALE	
				15=PC/WER OUTPUT:	
				17-OCL REFERENCE	
				IS-OCL RAMPOUTPUT.	
				19-OCL FEEDBACK.	
				23-OCL OUTPUT	
				21=FIELD REFERENCE:	
				22-FIELD PEBDDACK	
				23-NDEW IN RDG 1:	
				24-NETW IN REG 2: 25=SETW IN REG 3)	
				A DE NET W JD REUS ST	
250	58		FREQ OL T	DO Exp Kit fits namey	P.429
			ZERO	culput	
				frequency that	
				corresponds to	
				digital sens (kHw/100)	

Table A + - Register Assignments for DROP + Associations).

DeviceNet	Muster Read Register		Porumeter Nume	FlexPak 3000	FlexPak 3000
Attribute a	Keg∉	Kil †		Description	Parameter †
Configuration (contracted)					
251	59		FREQ DUT FULL SCALE	DD loop Kir frequency compiliated corresponds to digital 40% (EBeV100)	¥#27
					P.602
252	öi		LIEVEL DETECT 1 SELECT	Level Deroeter 41 source 01-CML (dbk: 1-apd https://2-apd.tamp.cot: fi-apd/mmilit 4-a al source admition,	
23.3	б.,		LISVEL DISTRCT 2 SELECT	Level Detector †2 source 01–CML (Jible 1– qui le ble, 12–spáinem cost, 1– qui tant i u 4– qui sa marsichat su (P.535
254	62		NOMENAL AU LINE PREQ	Nominal A-C line frequency 'Hz'	Pesta
255	67		NOMENAL AC LINE VOLTS	Nominal A-C line voltage (volts RM5)	P.907

Told: A = - Bog dot Assignments for DBOP = Aver

-Parameter

APPENDIX B: POLL CONNECTION DATA FORMAT

Table B.1 contains the format for Poll Connection Command Data.

		availuble * - Parumeter mut ar ailable.		
Output Word	Da Number	Description	Crist	Cantra – Coutig
R .	1615	Sequence Course, Werd	-	~
	0	Run (0-6+1) transition to con-	5 E	
	31	Stop (0-wop)		
		Full read (0464) transition terms ()		
	3	fog (0 to 1 transition to fog, $0 = step rog$)		
	<u></u>	Forward/Royase (0 = Forward)	2	
	5	Reserved		
	6	Racrwd		
		Outer Control Loop Enable (l=enabled)		
	<u></u> 	Foult Log Clear and Reset (0-to-1 transition to clear: Alarm Log Clear and Reset (0-to-1) consistion (is clear)		
	13	Alarm Reset Twicel transment for resel		
	- 11 -	Merrory Save (3-tr-1) ransation to reset		
	12	reserved	-	
	15	Rissingul		
	- 12	Time/Cfg Int.t. Enable (3 = read Control/Reference from network;	-	
	1. Read Control-Reference. Pure, and Cfg from nativo ki			
	15	T meifflig Update Syschronization Flag		
1 L	0.15	Speed Concel	1	~
7	0-15	Network lapat Ray Al	×	*
3	0-15	Tield Reterence Reg	~	~
1	0-15	Acceleration Times	*	~
5	1415	Deceleration time	*	~
6	1415	Min-Spead Clur	*	~
7	0-15	Max Speed Can	×	*
8	0.15	Posicive Ocerem Lemin %	*	~
ij.	1615	Neestivo Conten Lunar S.	*	~
10	0-15	Second Rounding	*	~
11	0-15	Thin Range	*	~
12	0.15	Speed Leop Pf Drop Cuin	*	~
11	1415	Speed Leap PI Lead Programmy	*	~
14	0-15	CMLP Prop Gen	÷.	*
15	0.15	CML Pf Lead Precuency	×	~
16	0.15	CML Reference Rate Limit	*	
17	1-15	. as Speed	×	~
18	0-15	Step Type Sales	1 x	~
10	0.15	R Compensition	×	- 2
20	0.15	Current Compounding	x	-
	1-15			~
21		Network Loss Action	<u><u></u></u>	
1.01.04	0-15	Network Out Rogista Al School	*	
23	0.15	Network Out Register #2 Selex	*	~
24	1-15	Network Clur Registar #3 Scient		~
25	1-15	Eardlock Scient	× ×	~

Table B.2 contains the format for Poll Connection Reply Data.

		 Porumeter available Porameter not available 		
lnput Weed	Bit Nucleo	D.ss ription	Causal	Control + Config
R	3-12	Status Word	~	~
	0	Etrive Ready		
	<u>1</u> /	Drive Rubin og		
	3	Fault Active		
	30	Drive Jegging		
	4	ForwardRoverse (0+Barward)		
	3	Drive Scopping		
	- 1	TuncaX(), Fradle Fradbook (1-500/01a/).		
	75	TuneX (g Synchronization Peechack		
	8	Alere Active		
	5	Curreat Liani)		
	10	Crost (D.4 Interfacic (1-closed)		
	11	Customer Interlock (I=closed)		
	12	Parameter processing errori st		
	1.2	terminal Block Ferward/Reverse (CTB-F)		
	14	Lemicral Block Auto(Manual (C) H-6)		
<u>, </u>		Tehri al Riask Fadi/Alson (CTR-D2)	~	~
1	0-0	Speed reference	ž	-
-	0-13	Specif Rubernse Smith Specif Feedback		
<u>-</u>	3-13	CMI Fasllack	~	
4	0-13	Network O., Rep 41		
1 2 3 4 5 6 7	3-15	Natsock Or, Reg 42	~	-
7	0	Network Out Rep 45		~
	y	porvoux con targ to		
8	0-07	Fault Dus Lands Word Al	×	~
•	0	AC Line Synchronization Loss		
	1	Metre Shuit Field Durent Loss		
	3	Susained Overleyd		
	3	Self-rate for t		
	1	Moter Thomestat Tripped		
		Controller Thermostal Fright		
	6	Diover Motar Statia Open		
	13	Open Armatase Circuit		
	8	Losis Lanceus Armato e Oversument		
	9	Over Speed / Over Voluge		
	10	Op.a S.R		
	1.	reserved		
	12	Lochaniera 1 ass		
	12	OIM Communication Lass		
	14	Nerwork Feither include 1 ess		
	15	Researd		
9	0.3	Fest Fault	×	~
102	3-15	Alarr: Bits Lord: Word \$1	×	~
	Ð	Motor Brush West Lew		
	1	AC Line Voltage < 50% af cominal		
	1	ACT includes a provide straining 1		
	2.3	Reserved		0.000
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
11	3-12	Last A arm	×	~

APPENDIX C: EXPLICIT MESSAGING FOR THE HEC-FP3-DN

1.1 General

1.1.1 The HEC-FP3-DN supports the DeviceNet "Explicit Messaging" features to reach those parameters not available through the Polled Connection. Those parameters that are available in the Polled Connection are also available with the Explicit Messaging features.

1.1.2 Note that Explicit Messaging is inherently slow, as only one Explicit Message is allowed per pass through the Scan List. Explicit Messaging is not intended for continuous, high-speed update of parameters, and should be used only for infrequent or periodic updating of certain lessthan-critical parameters.

1.2 Explicit Message Format

1.2.1 Each Explicit Message takes the following format:

Byte Number	Description	Example (Value in HEX)
C	MACID	As Needed
3.	Service Code	10 or E0
2	Class ID	BA
3	Instance #	01
4	Attr bute 🕅	As Needed
- 52	Stores and	XX
39 1	Optional Data	XX
п		XX

1.2.2 In many cases this byte wise (8 bit) data will need to be formatted into word wise (16 bit) format. Conversion of this information will be dependent on the PLC used.

1.2.3 Be ow is a typical word-wise (16 bit) message format used by GF Fanue:

	C.2 – 16-Bit ge (Example)
Word Offset	Value (Examples in HEX)
%B1	0F01
%B2	01BA
%R3	xx04
- S	
- N - 1	
п	

1.2.4 The methods for sending and receiving Explicit Messages from any specific DeviceNet Master or (Scanner) will be peculiar to that device. Please refer to the Owners' Manual supplied with the DeviceNet Master (Scanner) device used to generate the messages.

1.3 Explicit Message Response Format

	Table C.3 –	Acknowledg	jed Message (Example)
Byte Number	Description	Example (values in HEX)	
0	Number of	66	
1	bytes received	00	
2	MACID	01	
3	Service Code	90	Previously sent Service Code (0x10) + 0x80
2	Optional Data	xx	
	Optional Data	XX	
		XX	
n		XX	

1.3.1 The normal, expected response from an Explicit Message is the Acknowledge Message:

1.3.2 Note that the Most Significant Bit of the Service Code byte is used as a Response Bit, thus indicating that the command was properly received. [Service Code 0x10 + Response Bit 0x80 - 0x90] If any extra data needs to be returned, that data will be placed into subsequent bytes.

1.4 Explicit Message Error Format

1.4.1 In the case that an Explicit Message requests a function that can not be performed by the addressed unit, an Explicit Message Error will be returned in the Receive Buffer

NOTE: This should not be confused with an Explicit Message that fails during transmission. These will be returned as Network Errors.

	Table C.4 – Explicit Error Message					
Byte Number	Description	Example {Values in HEX}	Word Olfset	Value (From example)		
0	Number of	06	%R1	0008		
1	bytes received	00	%R2	9401		
2	MACID	01	%R3	XXXX		
3	Service Code (Error)	94				
4	General Error Code	xx				
5	Additional Error Code	XX				

1.4.2 An Explicit Error Message takes the following form:

1.4.3 Like a "normal" response, the Service Code byte has the Most Significant Bit set as the Response Bit. Therefore, the actual Error Code is 0x14: with the Response Bit set the received code is 0x94. Code 0x14 indicates a Parameter Error has occurred – the requested action could not be performed by the addressed device.

1.4.4 The General Error Code is one of a number of codes supported by DeviceNet. See Table C.5 for a list of General Error Codes.

1.4.5 The Additional Error Code is generated by the answering device. This code, if available, will depend on the answering device.

1.4.1.1 Components of an Explicit Error Message (See Table C.4)

a. MACID

This is the Network ID of the unit to be control ed.

b. SERVICE CODE

Each Explicit Message requires a SERVICE CODE. There are two possible Service Codes for the HEC-FP3-DN:

Service Code 0x0-3 -- Cet Parameter Each Get Parameter request will require 0 (zero) bytes of additional data. The returned messages will require one *word* (two *bytes*) of additional data.

Service Code 0x10 Ser. Facameter Each Set Parameter request will require one *word* (two *bytes*) of additional data to be sent. The returned message will require 0 (zero) bytes of additional data.

c. CLASS ID

Each Explicit Message requires a CLASS ID. The Class ID for the HEC-FP3-DN is 0xBA (decimal 186).

d. INSTANCE ID

Each Explicit Message requires an INSTANCE ID, which identifies one of a group of dentical controls in any attached unit. In the HEC-FP3-DN, there is only one "instance" in the controller, so the Instance Number is always "01".

c. ATTRIBUTE NUMBER

This is the identifying number of the parameter inside the drive to be read or written.

The HEC-FP3-DN has 256 possible parameters. These are arranged in four (4) "drops" (1-4) of sixty-four (64) parameters (0-63) each. [See Tables A.1 through A.4, above). Therefore, to figure the INSTANCE ID for a particular parameter the following formula is used:

INSTANCE LD = ((DROP = 1) \times 54) + REG#

1.5 Error Codes

The following General Error Codes are supported by DeviceNet devices. Any additional error code is supplied by the device generating the error.

Table C.5 – Error Codes					
Error Code (hex)	Description				
OG - D1	Reserved				
02	Resource Unavailable				
03 – 07	Reserved				
08	Service Not Supported				
09	Invalid Attribute Data Detected				
CA	Reserved				
0B	Already in requested Mode/State				
DC	Object State Contilo:				
DD	Reserved				
CE	Attribute Not Settable				
0F	Privledge Violation				
10	Device State Conflict				
11	Reply Data Top Large				
12	Reserved				
13	Not Enough Data				
14	Attribute Not Supported				
15	Teo Much Data				
16	Object does not exist				
17	Reserved				
18	No stored attribute data				
19	Store operation tai ure				
1A – 1E	Reserved				
1F	Vendor specific error				
20	Invalid Parameter				
21 – CF	Reserved for Future Extensions				
D0 – FF	Reserved for Object Class and Service errors				

1.6 Using Explicit Messages and Polling with the Same Device

1.6.1 The potential for confusion and problems with device operation exists when both Polled Messaging (by default) and Explicit Messaging (under program control) are used together. It is best to <u>not</u> use Explicit Messaging for any registers controlled through the Polled Message system

1.6.2 Regarding Read Registers (Status, Speed Reference, etc), the information is available from the Polled Message. The information is updated continuously and automatically. Accessing any of the registers through an Explicit Message is possible, but the information is already available from the Polled Message.

1.6.3 Regarding Write Registers (Sequence Control, Speed Control, etc), the problem is potentially more serious. The registers inside the HEC-FP3-DN are updated constantly by the Poliod Mossages. Any data written to the registers by an Explicit Message will be overwritten almost immediately by the next Polied Message.

1.6.4 If data is being overwritten, the problem manifests itself as either bits and controls that appear "intermittent" or completely inoperative. The problem occurs when the Explicit Message data is being over-written by the Polled Message data which violates the Data Retention Times specified in Section 5.8.

07 May 1999

Revision pages for Horner Electric's DeviceNet[™] Network Communication Option Board for use with Reliance Electric FlexPak 3000 DC Drive User Manual

HEC-FP3-DN, Fourth Edition

Attached to this cover page is a revision for the <u>Homer Electric DeviceNet™ Network</u> <u>Communication Option Board for use with Reliance Electric FlexPak 3000 DC Drive</u> <u>User Manual dated 25 February 1998 (MAN0066-04).</u>

THESE REVISED REQUIREMENTS ARE NOW IN EFFECT.

New and revised pages may be issued period cally. For user manual updates, please contact Homer Electric Advanced Products Group, Technica, Support Division, at (317) 916-4274 or visit, our website at <u>www.neapg.com</u>.

Revision Key

Changes to text, tables or graphics contained in the attached revision are indicated as follows:

- 1. Added text is underlined.
- 2. Deleted text is lined through.
- 3. New. revised, or deleted items are specified as such in ().

List of Effective Pages

The most current user manual consists of the following list of effective pages <u>including</u> the attached revision pages: * Denotes new or revised pages

Page

Date

Front Cover	
2-16	
*17	
	Contained in MAN0086-04 dated 25 Feb 1998
^26	
	Contained in MAN0086-04 dated 25 Feb 1998

CHAPTER 4: DRIVE CONFIGURATION (NEW) WARNING: Risk of severe bodily injury or equipment damage exists. The drive restarts if the START and STOP bits in the control word are maintained high, and the PLC is switched from

Program to Run mode. Precautions need to be taken to ensure that these mode switches do NOT create a hazard of bodily injury or equipment damage.

(Warning added 07 May 1999)

(REVISED) 1.2.4.1 General

(Heading revised 07 May 1999)

The section describes how to configure the FlexPak 3000 controller containing the DeviceNet Network Communication Option Board for use on the DeviceNet network. Refer to the FlexPak 3000 Installation and Operation instruction manual for more information on the drive parameters described below.

4.2 Network Communication

4.2.1 The drive becomes active on the DeviceNet network after the user performs the following steps. Note that these steps should be followed in the order listed to provent drive fault(s). (The HEC-FP3-DN Card cannot be used in conjunction with Automax card).

1. Connect the Network Option board to the network via the standard "pluggable" DeviceNet connector (See Section 2.2 for wiring information).

Apply power to the drive.

3. Using the keypad, access the drop number assignment parameter (NETW DROP NUMBER (P.900)) and assign a valid DeviceNet network drop number to the drive.

4. Using the keypad, access the network connection type parameter (NETW CONNECT TYPE (P.910)) and select either **Basic Drive Connection** or **Full Drive Connection**.

 Using the keypad, access the DeviceNet Baud Rate (NETW BUAD RATE) (P.912) parameter and select 125.0 KBAUD, 250.0 KBAUD, 500.0 KBAUD, or OTHER.

 Using the keypad, access the DeviceNet poll message type (DEVNET POLL MSG TYPE) (P.913) and select CONTROL ONLY or CONTROL+CONFIG.

Apply power to the DeviceNet network.

4.3 Network Connection Types

4.3.1 Two Types of Network Connections

4.3.1.1 The drive's network connect on type defines the scope of data and control that the master has with the connected drive. Two types of connections are provided: BASIC drive connect on and FULL drive connect on. The drive's network connection type is selected with a drive parameter (NETW CONNECT TYPE (P.910)).

4.3.2 BASIC Drive Connection

4.3.2.1 Select **BASIC** drive connection if the application does not require a complete configuration of the drive over the network. Only certain parameters and diagnostic information commonly used will be controlled over the network. Selecting this option for NETW CONNECT TYPE (P.910) results in data size of 64 words.

5.12 Poll Connection Data Transfer Format

(NEW)

WARNING: Risk of severe bodily injury or equipment damage exists. The drive restarts if the START and STOP bits in the control word are maintained high, and the PLC is switched from Program to Run mode. Precautions need to be taken to ensure that these mode switches do NOT create a hazard of bodily injury or equipment damage. (Warning added 07 May 1999)

5.12.1 General

As described in Section 4.3.3, the DeviceNet polled connection is used in most cases to accomplish drive control. The following information illustrates the data format that is expected and returned by the drive when using the polled connection:

5.12.2 Poll Connection Command Data Format

Word#	Description
0	Drive Control
1	Speed Control
2	Network Input Reg #1
з	Field Reference Reg

(Poll connect on consumption size = 8 bytes)

The following data should only be sent in the pell command message if the drive is configured to accept control + config data in the poll command message. (See Section 4.2.)

4 Acce Time Out 5 Decc Time Out 6 Min Speed Out 7 Max Speed Out 8 Pos Current I im t % Neg Current Limit % 9 10 S-Curve Rounding 11 Trim Rande 12 Spd Loop PI Prop Gain Spd Loop PI Load Frg 13 14 **GML PI Prop Gain** 15 **CML PI Load Freq** CML Ref Rate Lim t 16 Jog Speed 17 Stop Type Select 18 IR Componisation 19 Current Compounding 20 21 Ntwk Loss Action 22 Ntwk Out Reg #1 Sel 23 Ntwk Out Reg #2 Sel Ntwk Out Reg #3 Sel 24 25 Feedback Select

(Poll connection consumption size = 52 bytes)