RELIANCE
ELECTRICH[]

AUTOMAX

Pocket
Reference

@ Aten-Bradiey
srncepr vodoE

. Rockwell
Automation

Bringing Together Leading Brands in Industrial Automation

The information in this user’s manual is subject to
change without notice.

DANGER

THIS MATERIAL IS NOT INTENDED TO PROVIDE
OPERATIONAL INSTRUCTIONS. QUALIFIED
ELECTRICAL PERSONNEL MUST READ AND UN-
DERSTAND THE APPLICABLE INSTRUCTION
MANUALS IN THEIR ENTIRETY PRIOR TO IN-
STALLING, ADJUSTING, OPERATING, AND SERV-
ICING THIS EQUIPMENT. FAILURE TO OBSERVE
THIS PRECAUTION COULD RESULT IN SEVERE
BODILY INJURY OR LOSS OF LIFE.

Motorola is a trademark of Motorola, Inc.

The Norton Editor is a trademark of Peter Norton
Computing.

Kermit is a trademark of the trustees of Columbia
University. .

Windows is a trademark of Microsoft Corporation.

Multibus is a trademark of Intel Corporation.

Ethernet is a trademark of Xerox.

Modbus is a trademark of Gould, Inc.

Toledo Scale is a trademark of Toledo Scale.

Reliance®, AutoMax®, MaxPak®, AutoMate®,
ReSource™ and R-NET™ are trademarks of
Reliance Electric or its subsidiaries.

Table of Contents

Introduction., jii
Organization of This Reference Manual. iv
Section I: Status and Error Codes 1-0
Statusand ErrorCodes 141
General Troubleshooting Procedures 1-3
Error Code Listing (by Location of
CodeDisplay).o i 1-5
57C430,57C431,0r57C435 1-5
57C404,and 57C416. 1-12
57406 o o e 1-13
57C417, 57C414, 57C418, 57C428. 1-13
45C83,57C330 o 1-14
S7C424 .o :: v 5 s s s HERBREREE § 1-15
B7CA29 o it e 1-15
.LOG Files and Screen Display. 1-16
Section II: Hardware Module Reference. 2-0
45C33, 57C330 Remote I/OHead 2-1
57401 Drive Digital I/O. 2-3
57C40011SVACInput. 2-4
57C402 24-115 VAC/DC Output 2-5
57C403, 61C503 115 VAC Output 2-5
57C404 Network Communications. 2-6
57406, 57405 Drive Control and Analog I/O . 2-10
57C409 2-Channel Analog Input 2-1
57C410 Analog OQutput. 2-13
57C411 Resolver nput. 2-15
57412 Field Controller 2-16
57C414 Modbus Interface. 2-16
57C41524 VAC/DC input 2-19
57C416 Remote I/O 2-20
57C417 AutoMate Interface. 2-21
57C418 Allen-Bradley Interface. 2-23
57C4195-24VDClInput 2-26
57C4205-24 VDC Output 2-27
57C421 Puisetach input 2-28
57C422 2-Axis Servo. 2-32
57C424 MaxPak Ill High Speed Link 2-35
57C428 Toledo Scale Interface. 2-37
57C429 AutoMax R-Net Processor 2-38
57C430, 57C431, 57C435 AutoMax
Processor. 2-40
57C491, 57C493 Power Supply. 2-41
61C22,61C23 Local IfOHead 2-42
61C345 4-Input Analog Rail (4-20 mA) 2-43
61C346 4-Input Analog Rail (0-10V) 2-43
61C350 2-In/2-Out Analog Rail (0-10V) 2-44
61C351 2-In/2-Out Analog Rail (4-20mA). . . 2-45
61C365 4-Output Analog Rail (4-20mA). . . . 2-46
61C366 4-Output Analog Rail (0-10V). 2-47
61C500 115 VAC Input. 2-48
61C51524 VAC/DC Input 2-49

61C540 CurrentInput 2-50

61C542 Voltage Input
61C544 RTDInput
61C605 8-Channel Thermocouple
61C613 16-ChannelAnalog Input.

Section Ill: Programming Reference
BASIC Language Quick Reference
BASIC Language Listing.
Control Block Language Quick Reference . .
Control Block Execution Time Estimates . . .
AutoMax Off-Line PC Editor Quick

Reference
PC/Ladder Language Format.
PC/Ladder Logic Execution Time and

Memory Usage Estimates.
Norton Editor Command Summary

Section IV: Appendices.
Appendix A: ASCII Conversion Chart
Appendix B: Decoding Bus Errors.
Appendix C: Summary of Common

DOSCommands
Appendix D: Windows Command Summary . .

4-2

4-5
4-6

Introduction

The equipment described in this document is manu-
factured by Reliance Electric Industrial Company.

This document is designed to serve as a quick refer-
ence for AutoMax systems. It includes information
about programming, hardware module port and reg-
ister descriptions, and a list of status and error
codes. This document does not take the place of in-
struction manuals that describe the individual hard-
ware modules, the programming languages, and the
AutoMax Executive software. For specific informa-
tion, you must refer to the following instruction man-
uals:

« J-3675 AutoMax ENHANCED BASIC LAN-
GUAGE INSTRUCTION MANUAL

* J-3676 AutoMax CONTROL BLOCK LAN-
GUAGE INSTRUCTION MANUAL

¢ J-3677 AutoMax LADDER LOGIC LAN-
GUAGE INSTRUCTION MANUAL

« J-3616 KERMIT COMMUNICATIONS SOFT-
WARE INSTRUCTION MANUAL

« J-3618 NORTON EDITOR INSTRUCTION
MANUAL

« J-3630 ReSource AutoMax PROGRAM-

MING EXECUTIVE INSTRUCTION
MANUAL VERSION 1.0

* J-3684 ReSOURCE AutoMax PROGRAM-
MING EXECUTIVE INSTRUCTION
MANUAL VERSION 2.0

* J-3636 COMMON MEMORY MODULE IN-
STRUCTION MANUAL

» J-3649 AutoMax CONFIGURATION TASK
INSTRUCTION MANUAL

* J-3650 AutoMax PROCESSOR MODULE IN-
STRUCTION MANUAL

» J-3661 ReSource AutoMax SOFTWARE
LOADING INSTRUCTIONS

« J-3750 ReSource AutoMax PROGRAM-
MING EXECUTIVE MANUAL VER-
SION 3.0

+ S-3006 DISTRIBUTED POWER DC DRIVE
CONFIGURATION AND PROGRAM-
MING

» |[EEE 518 GUIDE FOR THE INSTALLATION OF
ELECTRICAL EQUIPMENT TO MINI-
MIZE ELECTRICAL NOISE INPUTS
TO CONTROLLERS

» Your personal computer and DOS operating sys-

tem manual(s)
» Other instruction manuals applicable to your hard-
ware configuration

Organization
of this Reference Manual

This reference manual is divided into four sections
as follows:

1. Status and error codes organized by where they
appear.

2. Hardware moduie reference.

3. Programming reference (BASIC, Control Biock,
PC/Ladder Logic, and Norton Editor).

4. Appendices:
A — ASCII conversion chart
B — Decoding hexadecimal addresses of bus
errors
C — Summary of common DOS commands
D — Summary of Windows commands

Section |
Status and Error
Codes

1-0

Status and Error Codes

Status and error codes can be used to diagnose the
state of the system. These codes indicate conditions
or symptoms only, not necessarily the root cause of
any problem. Status codes are those that indicate a
condition that does not necessarily signify an error.
For example, code “LO” means that the runbase, or
operating system, needs to be loaded onto the rack.
Error codes indicate a hardware or software problem
in the system. Error code 7.2. displayed on the Pro-
cessor module, for example, means that the system
received a spurious interrupt during runbase booting.
Depending upon its severity, an error can have three
different effects on the system when it is running:

a) “ERROR" is listed in the task status field on the
ON LINE menu of the AutoMax Programming Execu-
tive software. The task that caused the error, as well
as any other tasks that are running, continue to run.
In most cases, the error log for the task will show an
error code and a line number indicating where the
error occured.

Example: Error code 759 in the error log; 0 is being
used as a divisor in an application task.

b) All tasks in the rack are stopped. The Proces-
sor(s) can still respond to commands from the per-
sonal computer.

Example: Error code 17 on Processor LEDs; a task
has attempted to read or write to an in-
valid address.

c) All tasks in the rack are stopped and all Proces-
sors in the rack are shut down. The Processor(s)
cannot respond to commands from the personal
computer.

Example: Error code F9 on Processor LEDs; the
Processor runbase, or operating system,
is not functioning correctly.

Location of Status and Error Codes

Status and error codes can appear in three places.
Hardware status and error codes are usually dis-
played on the seven-segment LEDs on faceplates.
Codes found on module faceplates are read top to
bottom. Note carefully that some of the codes in-
clude decimal points, which are easy to overlook.
Codes “3.0.” and “30", for example, are not the
same.

1-1

Application software errors that occur while tasks
are running are displayed in the error log maintained
for each task by the AutoMax Executive software.
The error log is accessed through the INFO LOG op-
tion from the ON LINE menu. Where applicable, the
error log will display the line number of the state-
ment that caused the error, or the hexadecimal bus
address where the error occurred. To decode the
bus error address, see Appendix B.

Errors that occur when tasks are compiled, loaded
to the Processor, or saved from the Processor are
written to .LOG files if the LOG option is selected.
They are also displayed on the screen during these
operations unless the NOSCREEN option is se-
lected.

Another status indicator is the single green LED la-
beled “OK” found on some modules, such as the
AutoMax Processor and the Common Memory mod-
ule. This LED is either on or off and signifies
whether the module is functioning properly when
power is applied to the system. Note that in the case
of the Common Memory module, this LED will also
be off if the module is not in slot zero of the rack.

Organization of Status and Error Codes

In this reference manual, status and error codes are
listed together, organized in numerical and, where
applicable, alphabetical order according to where
they appear. Codes have been assigned in logical
categories, e.g., BASIC Run Time Errors, and are so
labeled. Specific troubleshooting procedures are
usually included at the end of each section. A de-
scription of general troubleshooting procedures pre-
cedes the list of status and error codes.

General Troubleshooting
Procedures

DANGER

ONLY QUALIFIED ELECTRICAL PERSONNEL
WHO ARE FAMILIAR WITH THE CONSTRUCTION
AND OPERATION OF THE EQUIPMENT AND HAZ-
ARDS INVOLVED SHOULD INSTALL, ADJUST, OP-
ERATE, AND/OR SERVICE THE EQUIPMENT.
FAILURE TO OBSERVE THIS PRECAUTION
COULD RESULT IN SEVERE BODILY INJURY OR
LOSS OF LIFE.

WARNING

INSERTING OR REMOVING HARDWARE OR ITS
CONNECTING CABLES MAY RESULT IN UNEX-
PECTED MACHINE MOTION. POWER TO THE MA-
CHINE SHOULD BE TURNED OFF BEFORE
INSERTING OR REMOVING HARDWARE OR ITS
CONNECTING CABLES. FAILURE TO OBSERVE
THIS PRECAUTION COULD RESULT IN BODILY
INJURY.

The following are intended to be general guidelines

on troubleshooting. For specific information, turn to

the individual instruction manuals for AutoMax hard-
ware and software.

1. Check for error codes on hardware module face-
plates and the error log for all tasks. If the informa-
tion given is specific enough, e.g., the error log lists
the line number where the error occurred, correct
the problem indicated.

2. With power off, try removing and then re-inserting
any suspect module.

3. With power off, confirm that each module with ca-
ble connections has the proper connector attached
and that the connections are tight.

4. Check the voltage coming into the power supply
through the rack connections labeled “188” and
“189”. It should be 115VAC.

5. Check the LEDs on I/O modules. Make certain
their state (off or on) corresponds to the state of the
device to which they are connected for input mod-
ules. For output modules, make certain the state of
the LED corresponds to the state of the variable
used to reference the point.

1-3

General Troubleshooting
(continued)

6. Check the voitage on each terminal strip for wir-
ing problems.

7. Try to read inputs or write to outputs on suspect
modules through the 1/0 Monitor in the AutoMax Ex-
ecutive software. If the problem is in a remote rack,
try to read/write to the Remote I/0 Communications
module, M/N 57C416. If you can communicate with
the Remote 1/O Communications module, try access-
ing other modules in the remote rack.

8. Systematically replace modules, always replacing
the most recently removed module before going on
to the next. The last module removed before the
problem was corrected is the one that caused the
problem.

Basic order of replacement for local racks:

suspect module
Processor(s)

power supply
backplane

Basic order of replacement for remote racks:

suspect module in remote rack

Remote I/O Communications module in remote
rack

Remote I/O Communications module in local rack
Processor(s) in local rack

9. Verify that the physical configuration of the sys-
tem is reflected correctly in the configuration for the
rack. Verify that application tasks reference the cor-
rect /O points.

Note that one condition always signifies that a mod-
ule is malfunctioning and should be replaced. if
power to the rack is on and both the single green
LED labeled “OK” and the seven-segment LEDs are
off on any of the following modules, the module is
maifunctioning and should be replaced:

AutoMax Processor module

DCS 5000 Processor module (M/N 57C407)
Network module (M/N 57C404)

Remote 1/O module (M/N 57C416)

Modbus Interface module (M/N 57C414)
AutoMate Interface module (M/N 57C417)
Allen-Bradley Interface module (M/N 57C418)
Toledo Scale Interface module (M/N 57C428)

Error Codes Displayed on
AutoMax Processor
Module (M/N 57C430,
M/N 57C431 or M/N 57C435)

Processor Overload

00 CPU Overload

Corrective action: move one or more application
tasks to other Processor modules in the rack.
Power-Up Diagnostics

The following error codes are displayed while the
Processor module performs power-up diagnostics.

0.0. EPROM failed

0.1.-0.3. Bad CPU

04. Internal bus error test failure

-0.5. Parity test failure

0.6. External bus error test failure

0.7. Processor in the wrong slot

1.0.-1.6. RAM failure

2.0. 1/O protection failure

2.1. PIO failed

2.2. PC accelerator failed

23. 8253 timer/counter failed

24. SIO failure

2.5. Communications interrupt failed

2.6. SI0 interrupt failed

2.7. 8253 timer/counter interrupt failed

2.8. Local watchdog failed

3.0. Bad backplane

3.1. Multibus parity test failure

4.0.-45. Common memory RAM failure

4.6. Common memory system watchdog
failure

5.0. Processors with incompatible EPROMs
in rack

Corrective action: replace the Processor, or replace
the Common Memory module if error codes 4.0.-4.6.
remain on.

Runtime Errors
02 Invalid task or configuration checksum

Corrective action: replace the Processor module.

AutoMax Processor
Error Codes (continued)

Runbase Booting

The following status/error codes may be displayed
while you load the runbase, i.e., operating system,
onto the Processor module(s). All of the following
codes except 6.5. apply to the top port of the Pro-
cessor module, labeled “Programmer/Port B”.

5.1. Incompatible runbase downloaded

6.0. Unexpected interrupt on upper port of
Processor

6.1. Parity error

6.2. Receiver overrun

6.3. Framing error

6.4. Serial port fatal error

6.5. lllegal interrupt on lower port of
Processor

6.6. Transmit interrupt error

6.7. Runbase integrity lost

6.8. Bad runbase checksum

6.9. Transmit buffer error

7.0. Multi-Processor runbase download in
progress

7.1. Disconnect time-out during download

7.2 Spurious interrupt received

Corrective action: 6.3. may be caused by attempting
AutoMax ON-LINE functions before the runbase is
loaded onto the Processor module(s) in the rack. In
this case, exit the ON-LINE menu and download the
runbase. 7.0. is a status message only. For all other
error codes, cycle power and try to load the runbase
again.

Loading the Runbase Over the Network

8.0. Bad message length specified for net-
work message

8.1. Bad destination drop

8.2. Transmitting drop inactive

8.3. Destination port unallocated

8.4. Destination port busy

8.5. Did not receive expected response

8.6. Spurious network interrupt received

8.7. Network message is being transmitted

Corrective action: 8.0. and 8.1. are caused by a
failed Processor in the left most slot. For 8.2., check
the coax cable; then try replacing the Network mod-
ule. For 8.3. - 8.5., check the destination Network
module, then the leftmost Processor in the destina-
tion rack. For 8.6. and 8.7., cycle power and try to
load the runbase again.

Miscellaneous Processor Errors
8.8. Processor failure
Corrective action: replace Processor module.

1-6

AutoMax Processor

Error Codes
(continued)

STOP ALL Error Codes

The following hardware and software error codes
cause all tasks running in the rack to stop.

10

1

12

13
14
15
17

18
19
1A
1b

1C

1d

1E

1F

31
32

Event count underflow

- too many WAITs (max. 32768)

- not enough SETs (BASIC tasks)

Event count overflow

- too many SETs (max. 32767)

- not enough WAITs (BASIC tasks)

Hardware event time-out

- interrupt time exceeded programmed
time-out limit in a Control Block task

Runbase boot error

- a check on the runbase failed

Processor overlap limit exceeded

- ran out of processing capacity (time)

External watchdog time-out detected

- green LED out on another Processor

Address error detected

~ caused by a read/write to an invalid
address

Spurious interrupt or hardware failure

Power failure detected

Watchdog on this Processor failed

Hardware event count limit exceeded

- too many interrupts set without being
acknowledged

- program too long

- collective scans too fast

lllegal instruction detected

- runbase software fault

- bad Processor module

- bad EPROMSs

Privilege violation detected

- runbase software fault

- bad Processor module

Un-implemented instruction detected

- runbase software fault

- bad Processor module

llegal interrupt detected

- runbase software fault

- bad Processor module

Bus error

- attempt to access invalid address

Define channel error

- problem in application software

Define scan error

- hardware fault

1-7

AutoMax Processor
Error Codes (continued)

34 Memory integrity lost
- hardware fault
35 D-C drive CML block initialization error
36 Communication between drive Proces-
sor and 1/O controller lost
37 D-C drive i/O controller run-time board
error
- hardware fault
38 UDC module generated a STOP ALL
39 UDC module interrupt allocation failed

Corrective action: correct the problem in application
software. Try to reset by cycling power and re-ioad-
ing configuration and application tasks. Replace the
Processor module. For error codes 31 and 37, see

Appendix B in this manual. For 38, examine the er-

ror logs for all UDC tasks in the rack. For 39, cycle
power to the rack and re-load configuration and ap-
plication tasks.

BASIC STOP ALL Error Codes

The following error codes are caused by problems in
BASIC tasks and cause ali tasks running in the rack
to stop.

40 Too many RETURNs from GOSUBs (or
RETURN without GOSUB)

41 llegal jump into a FOR loop

42 NEXT statement does not match current
FOR

43 Invalid START EVERY statement

44 Invalid EVENT statement

45 STOP statement executed in application
software (causes a STOP ALL and
clears all I/O))

46 SET or WAIT attempted with no event
definition

47 Task stack overflow

48 GOSUBS not balanced at END state-
ment

49 Insufficient space for channel buffer

4A Attempted to execute undefined opcode

4B Attempted to execute non-executable
opcode

4C Attempted to execute illegal opcode

4D RESTORE to non-DATA statement line
number

4E Attempted to take square root of a neg-
ative number

4F Attempted RESUME without being in an

ON ERROR handler

Corrective action: correct the problem in application
software; for 47, check for PUT on a closed part; for
4A, check use of Ethernet functions in standard op-
erating system.

1-8

AutoMax Processor
Error Codes
(continued)

Multibus™ and Processor Bus STOP ALL Error
Codes

50 On-board parity error

51-54 On-board bus error or access violation
55 Multibus parity error during read access
56-58 Multibus access violation or bus error
60 Network interrupt allocation failed

61 Network receive queue overflow

62 Network transmit queue underfiow

Corrective action: reset by cycling power and re-
loading configuration and application tasks. If the
small green LED labeled “OK” on the Processor
module faceplate is off, replace the Processor mod-
ule. For error 58, check for incorrect IOWRITE state-
ment. Correct any incorrect accesses in application
software. Systematically replace hardware modules.
For error codes 50-57, if none of the above correct
the problem, try replacing the Rack/Backplane as-
sembly. Also see Appendix B in this manual.

AutoMax Drive-Related Error Codes

The following error codes indicate a power circuit or
external drive system fault. After correcting the prob-
lem, reset the Processor module by cycling power
and re-loading the configuration task and application
tasks to clear the error code. Note that these error
codes also appear in the Error Log for the Proces-
sor.

80 Instantaneous overcurrent fault
- armature current exceeded
I0C__THRESH value in CML task
81 Line sync loss fault
82 Tach loss fault .
- 40% armature phase angle with less
than 5% tach feedback
83 Overspeed/overvoltage fault
- CML task OSV__FDBK exceeded
OSV__THRESH number
84 Hardware overspeed fault
- Drive Analog module potentiometer
setting exceeded by input voltage

85 External |IET fault
- external fault input triggered
86 Phase rotation fault
- incorrect phasing
87 Shorted SCR detected in power module

Corrective action: troubleshoot power circuit and ex-
ternal drive system.

1-9

AutoMax Processor
Error Codes
(continued)

Configuration Error Codes

The following error codes usually indicate a discrep-
ancy between the actual hardware configuration and
the 1/O definitions in the configuration for the rack.

EO TASK specified in configuration unin-
stalled, at wrong priority, of wrong type,
on wrong Processor module; wrong
spelling of TASK

Et Invalid configuration, configuration not
successfully downloaded

E2 1/O referenced in configuration is miss-
ing.

E3 1/O referenced in configuration is miss-

ing. Invalid configuration, configuration
not successfully downloaded.

E4 Error building task, insufficient memory
in Processor module. Invalid configura-
tion, configuration not successfully
downloaded.

ES Error building task, insufficient memory
in Processor module. Invalid configura-
tion, configuration not successfully
downloaded.

E6 1/O referenced in configuration is miss-
ing. Error building task, insufficient
memory in Processor module.

E7 Invalid configuration, configuration not
successfully downloaded. I/O refer-
enced in configuration is missing. In-
valid configuration, configuration not
successfully downloaded.

E8 Error installing application task, com-
mon symbol could not be resolved, in-
sufficent memory in Processor module.

E9 Error installing application task, com-
mon symbol could not be resolved, in-
sufficient memory in Processor module.
Invalid configuration, configuration not
successfully downloaded.

EA Error installing application task, com-
mon symbol could not be resolved, in-
sufficent memory in Processor module.
1/O referenced in configuration is miss-
ing.

Eb Error installing application task, com-
mon symbol could not be resolved, in-
sufficient memory in Processor module.
1/O referenced in configuration is mis-
isng. Invalid configuration, configuration
not successfully downloaded

AutoMax Processor
Error Codes
(continued)

EC Error building task; error installing appli-
cation task, common symbol could not
be resolved, insufficient memory in Pro-
cessor module.

Ed Error building task; error installing appli-
cation task, common symbol could not
be resolved, insuffient memory in Pro-
cessor module. Invalid configuration not
successfully downloaded.

EE Error building task; error installing appli-
cation task, common symbol could not
be resolved, insuffient memory in Pro-
cessor module. I/O referenced in con-
figuration is missing.

EF Common variable forced by another
Processor module

Corrective action: verify that the configuration cor-
rectly describes the physical configuration of the
system and the tasks installed on the Processor
module(s). Reset by cycling power and re-loading the
configuration and application tasks. For error code
EF, un-force the variable and do a STOP ALL
CLEAR from the AutoMax ON-LINE menu.

Fatal Errors

The following error codes usually indicate that the
runbase is not functioning correctly. If any of these
error codes appear, the configuration task and alt
application tasks are deleted from the Processor
module.

FO-F9 Fatal error
FA-FF Fatal error

Corrective action: cycle power. Re-load the configu-
ration task and all application tasks. Replace the
Processor module.

Informational Messages

The foliowing codes signify a particular condition,
not necessarily an error.

dd This Processor module has successfully
completed power-up diagnostics and is
waiting for other Processor modules to
complete their diagnostics

LO The runbase needs to be loaded onto
the rack

b0 Rack configuration is being validated

do Application task installation in progress

1-11

AutoMax Processor
Error Codes

(continued)
d1 Waiting on synchronizing event (in a
rack with multiple Processors)
d2 Waiting on mutual exclusion lock (in a

rack with multiple Processors)

Corrective action for b0 and d0 that do not change
or disappear: re-load configuration and application
tasks.

Error Codes Displayed on

Network (M/N 57C404) and
Remote 1/0 (M/N 57C416)
Communication Modules

CPU failed power-up diagnostic

EPROM failed power-up diagnostic

RAM failed power-up diagnostic

CTC failed power-up diagnostic

SIO failed power-up diagnostic

DMA runtime failure; message transmit timeout
Dual Port memory failed power-up diagnostic
Memory management unit failed power-up
diagnostic

or .8 Bad EPROMs

PIO port failed power-up diagnostic

Invalid drop number. This only occurs if the drop
number on the thumbwheel switches is greater
than 55 on a Network Module or greater than 7
on a Remote /O Module.

Watchdog failed power-up diagnostic

Board not communicating. If board is a Master
drop, no other drops are functional on the Net-
work. If board is a Slave drop, it is not receiving
any messages from the Master. This fault code is
reset whenever the line goes active. -

d System (backplane) watchdog failure; Processor
module(s) went down; module is operational but
will not transmit or receive data until the watch-
dog is reset.

E Power failure. This code is normally present from

the time that a low voltage is detected until

power is completely lost.

> O NOoOOMbAWN~-O

oo

Corrective action (0 through 9, b): replace Network
or Remote 1/O Module.

1-12

Error Codes Displayed
on AutoMax Drive Controller
Module (B/M 57406)

CPU diagnostic

EPROM diagnostic

RAM diagnostic

P1O (8255) diagnostic

Counter (8253) diagnostic

Watchdog timer diagnostic

Interrupt structure diagnostic

Analog board diagnostic

8 or .8 Bad EPROMs

C Communication not active with processor
(normal code when CML task stopped)

d Spurious interrupt received — fatal

E Power fail interrupt received — fatal

F Watchdog timeout detected — fatal

NOODLWON~O

Corrective action: replace Drive Controller module.
Replace Drive Analog module. For code 7, check
power supply voltage. For E, check power supply or
backplane. For C, start the CML task.

Error Codes Displayed
on AutoMate® (M/N 57C417)
Modbus™ (M/N 57C414),
Allen-Bradley™ (M/N 57C418),
and Toledo Scale™
(M/N 57C428) Interface
Modules

CPU failed power-up diagnostic

EPROM failed power-up diagnostic

RAM failed power-up diagnostic

CTC failed power-up diagnostic

SIO failed power-up diagnostic

DMA failed

Dual Port memory failed power-up diagnostic

Memory management unit failed power-up

diagnostic

8 or .8 Bad EPROMs

9 PIO port failed power-up diagnostic

A Invalid device number. This only occurs if the de-
vice number on the thumbwheel switches is 00.

b Watchdog failed power-up diagnostic

~NoOphrwWN-=O

1-13

C Communication line status. Displayed only if the
link has not been configured by the application
program.

d System (backplane) watchdog failed; a Processor
module(s) went down. Module is operational but
will not transmit or receive data until the watch-
dog is reset.

E Power failure. This code is normally present from
the time that a low voltage is detected until
power is completely lost.

Corrective action (0 through 9, b): replace the mod-
ule. For M/N 57C417, C may indicate that the R-NET
Gateway is not responding.

Error Codes Displayed
on Remote 1/O Head
(M/N 45C33 or 57C330)

CPU failed power-up diagnostic

EPROM failed power-up diagnostic

RAM failed power-up diagnostic

CTC failed power-up diagnostic

CTC runtime failure

SIO failed power-up diagnostic

DMA failed

1/O device interface failed
or .8 Bad EPROMs

PIO port failed power-up diagnostic

Invalid device number. This only occurs if the de-

vice number on the thumbwheel switches is not

between 1 and 7 inclusive.

Watchdog failed power-up diagnostic

Communication line status. This means that the

Head is not receiving message from the Master.

This fault is reset whenever the line goes active.
E Power failure. This code is normally present from
the time that a low voltage is detected until
power is lost.

OuU

Corrective action (0 through 9, b): replace the Re-
mote 1/O Head.

Error Codes Displayed on
MaxPak lll High Speed Link
(M/N 57C424)

CPU failed power-up diagnostic

EPROM failed power-up diagnostic

RAM failed power-up diagnostic

CTC failed power-up diagnostic

DMA failed .

Dual Port memory failed power-up diagnostic
Memory management unit failed power-up
diagnostic

_Parallel 1/O port failed power-up diagnostic

Watchdog failed power-up diagnostic
Communication line status. Displayed only when
no messages are received from the MaxPak llI.
System (backplane) watchdog failed. Board is op-
erational but will not transmit or receive data until
the watchdog is reset.

E Power failure. This code is normally present from
the time that a power failure is detected until
power is lost.

.3 CTC run time failure.

.4 8IO run time failure.

.r Incompatible software revisions (MaxPak Ill -

57C424)

Q QU NOOWN ~-O

Corrective action (0 through 9, b): replace the
MaxPak 11l High Speed Link.

Error Codes Displayed
on R-Net Processor Module
(M/N 57C429)

(Code listed below is the “COM ER" LED pattern
read top to bottom)

0001 EPROM checksum error

0010 Scratch pad RAM failure

0011 Dual port memory failure

0100 Node number witch setting >250

0101 Communication circuit failure

0111 Local watchdog interrupt

1010 Software test (negative buffer length de-
tected)

1011 Software test (Message Length = 0 de-
tected)

1100 Unused interrupt detected

1101 Attempted word access on odd byte

1110 System watchdog interrupt

1111 Bus error

Corrective action: for errors 1-3, and 5, replace the
R-Net Processor module; for error 4, correct switch
setting on module; for errors 9-15, cycle power to at-
tempt to clear the error. i-i8

Compile, Load and Save
Error Codes Displayed
in .LOG Files and
on the Screen

The error codes in this section are generated when
tasks are compiled, saved from the Processor, or
loaded onto the Processor with the LOG option
selected. They are displayed in the correspond-
ing .LOG files and on the screen unless the
NOSCREEN option is selected.

Control Block Error Codes

257 Bad Control Block statement format

258 Unrecognized name for Control Block

259 Missing END statement in Control Block task

261 Variable used in Control Block not defined

262 Bad literal value for Kl, KP, or KD

263 Bad WLD * KP / C value

264 Bad literal value for DEAD__BAND,
MAX__CHANGE, or LOOP__TIME

265 Invalid data type for literal in Control Block

266 Incomplete input pairs or input/output pairs in a
Control Block

267 Bad SCALE, REQUIRED__SAMPLES, or
MAX__COLUMNS value

268 Bad specification for array in Control Block

269 Control Block not the only statement for that
line number

270 CML specified literal field out of range

271 SCAN__LOOP block not allowed with CML
block

272 Integer literal field too large

273 Invalid parameter keyword in Control Block

274 Calculated K value out of range

275 Literal symbol too long

276 Required Control Block field missing

277 Required Control Block literal missing

278 Control Block field must be literal

279 Control Block field must be variable

280 Non-contiguous inputs, input pairs or input/
output pairs in Control Block

281 Missing SCAN__LOOP block in Control Block
task

282 Signed boolean or numeric literal not aliowed

283 WLD value out of range

284 invalid value for Lead Lag W

285 Invalid value for WM

286 Invalid vaiue for WLD

287 Word size out of range

288 Array specified has too many subscripts

289 Integer literal > 24 bits (can't be accurately
converted to real)

290 Invalid value for MAX__INPUT

1-16

201
202
203
294
205
206

297
298

299
300

301
302
303

More than 1 CALL SCAN__LOOP in a Control
Block task

Fast floating point overflow

Fast floating point underflow

Fast floating point divided by 0

Meaningless tangent argument

Minimum number of inputs or outputs not pro-
grammed

Invalid data type for variable in Control Block
Parameter keyword previously defined in Con-
trol Block

Data structure symbol name too long

Data Structure requires more than maximum
storage

Number of inputs/outputs greater than data
structure definition

Duplicate definition or incorrect data structure

type
Invalid Control Block Mode specified

IODEF, RIODEF, NETDEF, RNETDEF, MODDEF
Error Codes (Configuration Errors)

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

328
324
325

Bad IODEF statement format

IODEF address must not be odd

Bad IQODEF variable type

IODEF hex address too large

Invalid bit number specification in RIO/NET DEF
Invalid literal in RIO/NET DEF

Missing master slot specification in RIODEF
Bad literal in IODEF

Missing bit field specification

Missing slot specification

Bad RIO/NET DEF statement format
Missing drop specification

Bad MODDEF statement format

Bad GATEWAY register specification

Bad RNETDEF statement format

Bad RNETDEF register specification
Invalid variable data type in GATEWAY
definition

Bad ABDEF statement format

Bad file specification in ABDEF statement
Bad boolean literal specification

Function Call Error Codes

336
337
338

339
340
341
342
343
344
345
346

Invalid function call format

Incorrect number of parameters in function call
Bad parameter data type in function call or bad
array subscript

Parameter symbol not defined

Variable must be simple (not array variable)
Invalid function parameter

invalid function expression

Bad function variable

Bad array; must be 1 dimension (integer)

Bad BLOCK__MOVE variable

Variable in function call not defined as
COMMON

Insufficient Memory Error Codes

356 Insufficient memory to compile array

357 Insufficient memory to compile FOR statement
358 Insufficient memory to build symbol table

359 Insufficient symbol table memory

360 Object code buffer overflow

361 Opcode position overflow; statement too long
362 No more user stack

363 No more program stack

364 No more type stack; expression too long

365 No more operator stack; expression too long
366 No more memory to link object code buffer

FOR-NEXT Error Codes

376 FOR control variable cannot be a tunable
variable

377 NEXT control variable does not match FOR
control variable

378 Controf variable must be simple (not array)
variable

379 Invalid data type on control variable in FOR
statement

380 Bad FOR statement format

381 Invaiid statement type following THEN in IF
statement

382 Missing expected THEN

383 Invalid data type for expression in FOR
statement

384 Missing corresponding FOR statement

385 FOR loops nested too deep

OPEN, CLOSE, INPUT, PRINT Error Codes

396 Bad device name — PORTA or PORTB only
397 Bad logical file number specification

398 Bad device name for OPEN statement
399 Bad baud rate in OPEN SETUP parameter
400 Invalid device specification

401 Bad OPEN statement format

402 Duplicate logical file number

403 Invalid CLOSE statement format

404 Invalid device name

405 Missing expected print field

406 Specified file has not been defined (no OPEN)
407 Device must be accessed by OPEN first
408 Invalid data type for PRINT USING format
409 Bad PRINT USING format

410 Specified format field width too wide

411 Cannot have PRINT USING with channel
412 Bad GET statement format

413 Bad PUT statement format

414 Bad INPUT statement format

415 Cannot close a channel

416 Cannot GET from a channel

417 Cannot PUT to a channel

418 Bad SETUP specification in OPEN device
419 Open device attempted on a channel

1-18

START, WAIT, DELAY, EVENT Error Codes

426 Invalid time units specification
427 Missing DELAY expression

428 Bad START EVERY statement
429 Bad WAIT statement format

430 Invalid event name

431 Bad EVENT statement format
432 Bad time units in START statement
433 Delay time units must be integer
434 Duplicate event name

435 Missing start interval

436 Missing event definition

Channel 1/O Error Codes

446 Missing DEPTH parameter on OPEN CHANNEL
FOR INPUT

447 Bad OPEN CHANNEL format

448 Bad channel template in OPEN statement

449 Invalid DEPTH specification for OPEN
CHANNEL

450 INPUT/PRINT reference does not match chan-
nel template

451 Not assigned

452 Channel template too large

453 Channel packet too large

454 Channel was opened for input but output was
attempted

455 Channel was opened for output but input was
attempted

Array Error Codes

466 Array requires more than maximum storage
467 Bad array subscript

468 Number of subscripts does not match definition
469 Not assigned

470 Missing array dimension

471 Too many array subscripts

Miscellaneous Compiler Error Codes

486 Missing delimiter

487 Missing equal sign “="

488 Missing left parenthesis “("

489 Missing right parenthesis “)’

490 Missing expected comma “,” or semicolon
491 Missing line number

492 Invalid line number

493 Line number out of range (must be 1 to 32767)
494 Invalid data type mixing in expression

495 Invalid variable type

496 Variable name same as reserved symbol
497 Variable name too long

498 Missing variable name

499 Variable name too long

500 Invalid subscripted variable

501 Invalid variable specified in READ statement
502 Missing variable definition

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

519
520
521
522

523
524
525
526
527
528
529

530
531
532

533

534
535
536
537
538
53¢
540
541
542
543
544

545
546

547
548
549
550

551

1-20

Invalid statement terminator; expecting EOS
Task must be a CONFIGURATION task
Missing operand (symbol or literal)

Missing arithmetic/relational operator

Not a valid statement for this task type
Invalid integer expression for ON GOTO
Invalid ON GOTO statement format

Missing expected TO

Expected expression not found

Missing expected line number

Invalid boolean expression

Invalid tunable statement definition

Symbol already defined; duplicate definition
Invalid data type for a tunable variable
Tunable variable ranges are inconsistent
Undefined variable or statement not permitted in
this type of task

Invalid tunable variable definition format
Tunable cannot be array or left side of equal
Missing expected variable

DATA statement not first statement for this line
number

Not assigned

Overflow in ASCIi to binary integer conversion
Numeric literal too large

Real literal too large

Nuil buffer overflow; statement too large
Object buffer overflow; statement too large
Expression evaluator; stack integrity lost;
expression too long and/or too complex
Compiler integrity lost

lliegal symbol in REM statement

CALL statement not first statement for this line
number

Task not of type BASIC, Control or
Configuration

Invalid task statement format

Invalid task priority

Invalid task name

Invalid slot specification

Missing string variable in GET statement
lllegal on board 1/O address specified

Bad IOWRITE format

Bad IOWRITE option expression

Bad IOWRITE value expression

Bad IOWRITE address expression

REM statement not the first statement on the
line

Bad ON ERROR statement format

Fatal expression evaluation error; no opcode
match

String literal too large

Too many total elements for an array

Array variable was referenced as a simple
variable

llegal state in expression evaiuation; integrity
lost

Bad expression in SET__MAGNITUDE
statement

6562 Bad SET__MAGNITUDE statement format

553 Bad variable type in SET__MAGNITUDE
statement

554 Invalid TIMEOUT expression in EVENT
statement

555 Symbol > 255 characters long; statement too
long

556 Bad IF statement transfer line number

557 Invalid characters after the ampersand
continuator

558 Remark statement too long

559 Line number out of range

560 Must be 1st statement on the line

561 Symbol is not a variable name

562 Loss of precision in converting real number

Resolution Error Codes

656 Line used in RESTORE is not a DATA
statement

657 FOR and NEXT variables do not match

658 Insufficient memory to compress object code

659 Object code larger than 32K

660 Stack requirements too large

661 Data structures too large

662 Symbol table integrity lost

663 Insufficient memory for post-compile resolution

664 Line number not resolved

665 Too many symbois

666 No TASK statement in configuration task

667 No symbols in configuration task

668 Duplicate data pointers with same data type;
assigned two different variables of the same
type to the same register or bit

669 Symbol table too large (too many symbols)

670 Invalid condition; integer literal in BASIC task
symbol table

671 Unable to allocate enough space for symbol
table

672 Symbol table integrity lost

673 Too many COMMON integers, double integers,
booleans used

674 Unable to allocate space for the BASIC runtime
structure header

675 Too many LOCAL integers, double integers,
booleans used

676 Too many LOCAL integers, double integers,
booleans literals used

677 Too many COMMON reals, strings, arrays used

678 Too many LOCAL reals, strings, arrays used

679 Too many OPEN CHANNEL statements

680 Too many arrays used

681 Too many FOR loops used

682 Too many real literals used

683 Too many real tunable variabies defined

684 Invalid condition; literal in Configuration task

685 Invalid condition; string literal type in symbol ta-
ble

1-21

686
687
688
689
690
691
692
693
694
695
696
697
69¢

700
701

Offset to real literal in Control Block

task > 16 bits

Invalid condition; LOCAL variable in
CONFIGURATION task

Invalid condition; relative symbol number not re-
solvable

Task too large

Error opening the object output file

Error writing to object output file

Task with READ statements but no DATA
statements

Too many LOCAL integers, double integers,
boolean variables used

Unable to allocate enough space for object
code

Undefined Control Block data structure found
Error closing source file (disk may be full)
Error closing log file (disk may be full)

Error attempting to load time/date into object
file

Object size > 32767 in Control Block task
Symbol & data size > 32767 in Control Block
task

Corrective action: correct problem in the application
software.

Run Time Error Codes

Displayed in the Processor

or UDC Error Log

The following error codes are displayed in the error
log maintained for each Processor and UDC module
by the AutoMax Executive software.

756
757
758
759
760
761
762

763
764

765
766

767
768

Arithmetic integer overflow code

Arithmetic real overflow code

String concatenate overflow

Divide by zero

Integer multiply overflow

Integer assign overflow

Single integer conversion overflow in real to sin-
gle integer

Double integer conversion overflow in real to
double integer

Real to double conversion yields number > 24
bits

String overflow

Precision lost in real to integer array element
conversion

Precision lost in real to double integer array ele-
ment conversion

Precision lost in real to single integer
conversion

1-22

769
770
771

772
773
774

775
776
777

778
779

780

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

815
816
817
818

Array subscript out of bounds

Requested substring > string

DATA type in READ statement does not match
DATA statement

No more DATA statements

Bad line number for RESTORE

Overflow in conversion of real to integer of FOR
loop control variable

Overflow in conversion of real to integer of FOR
statement TO value

Overflow in conversion of real to integer of FOR
statement STEP value

Integer > 24 bits in STEP value integer to real
conversion

Bad IOWRITE

Integer control variable overflow in FOR
statement

Double integer control variable overflow in FOR
statement

Real control variable overflow in FOR statement
Negative delay

Delay value too large (0 to 32767)

Negative start interval

Delay value too large (0 to 32767)

Not assigned

Hardware event # ticks < 0

Hardware event ticks overflow

Print buffer overflow; print field too long
Device not open properly

OPEN with bad device address

Device not open for write

No stack space for print

Device not allocated

No buffer for print operation; insufficient
memory

Fatal print error

Device already open

Device OPENed different from intended

Bad allocate

Bad default OPEN

Device already closed

Device opened as a channel

Bad device close; no address

Default device not allocated

Channel not open

Print integer channel overflow

Message overflow

Unsuccessful channel open

integer > 24 bits in real conversion

Real to integer overflow

No buffer for GET operation

No print buffer

Device closed on GET

GET attempted to un-opened device; GET not
open for read

Bad GET operation

No buffer for PUT operation

No print buffer

Device closed on PUT statement

1-23

819 PUT attempted on un-opened device; PUT not
open for write

820 Unsuccessful PUT operation

821 Device should be open

822 Invalid baud rate

823 Bad SETUP re-configuration

824 Precision out of range

825 Print width too long; printing integer field in
PRINT

826 Print width too long; printing integer field in
PRINT USING with L/R/C/Z format

827 Negative decima! places

828 Number of decimal points > max precision

829 Width less than zero

830 Field width overflow

831 Requested substring width < zero

832 Requested substring width > maximum

833 No space for requested PRINT USING field

834 String > field width

835 Bad channel depth

836 Device not open

837 Attempted negative square root

838 First substring position specification > string
length

839 Not assigned

840 Not assigned

841 Wrong data type input for boolean

842 Another error occurred during execution of ON
ERROR routine

843 Could not allocate for write

844 Wrong data type input for string

845 Last substring position < first substring
position

846 First substring position specification <= 0

847 Last substring position specification <= 0

848 Rotate count > 31

849 Overflow on absolute value function

850 Not assigned

851 Device open at END

852 Channel not open on input

853 Wrong type for integer

854 Next character after field not legal

855 Bad next character

856 No input channel I/O buffer

857 Not allocated for re-configuration

858 Bad BCD digit

859 Channel already open

860 Wrong token for comma

861 Not open for read

862 No comma between fields

863 Wrong data type input for real

864 No buffer space can be allocated for 1/0

865 Not assigned

866 Invalid re-configuration

867 Missing line number

868 Bad device on input

869 Wrong type for double integer

870 No device address

871 Number > 24 bits

1-24

872
873
874
875
876

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

956

Not open for write

No device address

Attempt to execute a null opcode
Unbalanced GOSUB-RETURN

NEXT does not match loop variable in FOR
statement .

NEXT does not match FOR

Bad START statement format

Bad hardware event call

Undefined opcode

Stack overflow

No channel buffer space

STOP executed

Opcode not assigned

No event address defined

GOSUBs not balanced

Bad VAL function conversion

BCD output number > 9999

Bad bit number in function call

Bad option number in function call

Invalid GATEWAY transfer call
BLOCK__MOVE invalid source parameter
BLOCK__MOVE invalid destination parameter
BLOCK__MOVE invalid transfer size parameter
RESUME without executing ON ERROR state-
ment

UDC task tick rates do not match

Corrective action: correct problem in application soft-
ware. For error code 891, check returned status vari-
able of GATEWAY__CMD__OK@; decode status as

follows:

Decimal

01 lilegal function code

02 lllegal starting register

03 lilegal data

04 ° PC aborted

05 Not assigned

06 PC busy

07 Not assigned

08 lliegal data in response message

09 Response timeout error

20 Dual port address error

21 Gateway card not found or not
accessible

22 No available Gateway channel

23 liegal register number

24 llegal number of registers

25 Ilegal command number

26 liegal command number/register set

27 llegal register number/number of
registers

28 Megal device address

1-25

UDC Drive Fault Register Error Codes

1000 SCR fault

1001 M-Contactor fault

1002 Not used

1003 Sync loss (A-C line voltage)
1004 Instantaneous overcurrent fault
1005 Conduction time out

1006 Field loss fault

1007 Tach loss fauit

1008 Broken wire in resolver

1009 Not used

1010 Over-speed trip

1011 Power technology module fault
1012 Not used

1013 Not used

1014 Not used

1015 Fiber optic link com. fauit

Corrective action: these errors reflect the status of
the drive fault register (A=202, B=1202) on the
UDC module. See S-3006 for more information.

Serial 1/O Error Codes

1064 EIA control (Carrier Detect lost)
1065 Parity error (when enabled)
1066 Overrun error

1067 Framing error

Corrective action: check for noise on the RS-232 ca-
ble, problems with the device connected to the Pro-
cessor, and problems with the Processor itself.

AutoMax DC Drive (DC__DRIVE__CML INIT) Errors

legal range
2000 10_CNTL__SLOT error Oto 15
2001 DIG_IO_SLOT error Oto 15

2002 REF__LAG input out of range 1 to 500
2003 PI__W__LEAD input out of range 10 to 500
2004 AG__FACTOR input out of range 1 to 300
2005 OSV_THRESH input out of range 0 to 32767
2006 LIM_BAR input out of range 100 to 400
2007 10C__THRESH out of range 100 to 400
2008 I0C calculation error
(I0C_THRESH>1.8 LIM__BAR)
2009 MAX_M__DROPOUT input out
of range 1t01.0
2010 “Allocate Vector for Regulator” error. (Possible
if using 4 Processor Modules and all 4 were
using hardware interrupts. All 4 of the bus in-
terrupt lines would be in use, leaving none for
the CML task.)

1-26

AutoMax DC Drive Run Time Errors

2020
2021
2022
2023
2030
203t

2032
2050

2051

2054
2055
2056
2057
2058
2059

REF__RATE input out of range 0<=32767
KP input out of range Oto4
TEST__ALPHA input out of range 0 to 180
CC__THRESH input out of range 0 to 32767
M-status would not go TRUE during start
Current would not go to zero within
MAX__M__DROPOUT during stop

M-status would not go FALSE during stop
Internal value > 32 bits; input numbers too
large

Computed QUTPUT value > 16 bits; input
numbers too large, divide by zero

WLG input value out of range

WLD and/or WLG input value out of range

Kl input value out of range

KP and/or WLD input value out of range
COLUMN number out of range

COLUMN can not currently be accessed

Corrective action: correct problem in application soft--

ware.

1-27

Section |l
Hardware Module
Reference

2-0

Note the following conventions in register and bit de-

scriptions:

R = read only; must NEVER be written to by
the application program

R/W = read/write; can be read or written to by
the application program

X = not used

Remote 1/O Head
M/N 45C33/57C330

The communications port on the 45C33/57C330 can
connect to a single rail or to a Local Head, which
can then connect to 1, 2, 3 or 4 rails. Note that input
cards and output cards cannot be mixed on the
same 1/O rail; electronic input cards cannot be used.

Sample Connection

REMOTE /O HEAD

COMMUNICATIONS
PORT=SLOT #

0 1 2 3

SLOT 3

ANALOG RAIL
REGISTERS 0-3

RAIL
SLOT 1
REGISTER 0

LOCAL HEAD
RAIL=REGISTER #
01 2 3

I

RAIL
SLOT 0
REGISTER 3

RAIL
SLOT 0
REGISTER 2

RAIL
SLOT 0
REGISTER 1

RAIL
SLOT 0
REGISTER 0

2-1

M/N 45C33/57C330

(continued)
LEDs
Color LED Description
yellow RUN Remote Head CPU in run
green POWER Power Supply OK
yellow CPU READY Remote Head CPU ready to
run
If Rail Fault Indicator is lit:
yellow FAULTMSB --->00= Rail0 01 =
Rail 1
yellow FAULTLSB ----- &
10 = Rail2 11 =
Rail 3

red RAIL FAULT Rail Fault Indicator

Programming terminal interrogation:

Command “R" can be entered to read the rails at a
communication port with the coax connected and the
module operating.

Command “S” for status can be entered with the
coax connected and the module operating. The “Last
Line Failure” codes displayed are as follows:

‘LE’ restart due to excessive LINE ERRORS
of any kind (RECEIVE TIMEOUT, CRC,
OVERRUN, or ABORT).

ur restart due to UNEXPECTED INIT re-
quest message.
‘PF’ restart due to a POWER FAIL interrupt

which occurs while the line is active. In-
put power has to remain valid for this
code to be stored and displayed.

‘Rn’ restart due to a port (rail) fault detected
during the most recent port I/O update
cycle.

n port number (0-3) which experienced the
fault.

Drive Digital 1/0 Module
B/M 57401

Register 0 (READ Only)

mse Lse
15 14 13 12 11 10 9 8 7 3 2 0

6 5 4 1
Ixlexlxlxlxlexlxlle'RIRIRIRIR
N

NOT USED

RUN PERMI (RPI)
AUX 3 (DRIVE RUN)
M STATUS (M__FDBK)
AUX 2
AUX 1
EXTERNAL IET-

Register 1 (WRITE Bit 0 Only)

MsS8 Lss

1 14 13 12 11 16 9 8 7 6 5 4 3 2 t 0
lexlxlxlxlxlexlxlxlxlxlﬂlRlRlﬁwl
NOT USED

MCR

RMCH:

FMCR

OFR:
LEDs
Color LED Description
yellow IET Reg 0, Bit 0 - 12 V IET input
yeliow Not used
yeliow AUX1 Reg 0, Bit 1 - Aux.1 Input
yellow AUX2 Reg 0, Bit 2 - Aux.2 Input
yellow MFBK Reg 0, Bit 3 - “M” Cont. Input
yellow DRIVE RUN Reg 0, Bit 4 - Aux.3 input
yellow RPI Reg 0, Bit 5 - Run Perm. Input

not used

yellow DFR Reg 1, Bit 0 - Drive Fault Out
yellow FMCR Reg 1, Bit 1 - For. MCR
yeliow RMCR Reg 1, Bit 2 - Rev. MCR
yellow MCR Reg 1, Bit 3 - Main Cntrl

Relay (light only)

B/M 57401

(continued)
Jerm_Signal Description Reg.
1 0V (Common) IET Common
2 0to12VDC IET Input Reg 0, Bit 0
3 0 V (Neutral) Aux1 Neutral
4 0to 115V AC Aux1 input - Reg 0, Bit 1
5 0 V (Neutral) Aux2 Neutral
6 0to 115V AC Aux2Input RegO, Bit2
7 0 V (Neutral) M Fdbk Neu-
tral
8 0to 115 VAC M Fdbk Input Reg 0, Bit 3
9 0 V (Neutral) Aux3 Neutral
10 0to 116 VAC Aux3Iinput Reg0, Bit4
11 0 V (Neutral) RPI Neutral
12 0to 115V AC RPI Input Reg 0, Bit 5
13 N.O. DFR Contact Reg 1, Bit0
14 Wiper DFR Contact .
15 N.C. FMCR Con- Reg 1, Bit 1
tact
16 N.O. FMCR Con-
tact
17 Wiper FMCR Con-
tact
18 N.C. RMCR Con- Reg 1, Bit 2
tact
19 N.O. RMCR Con-
tact
20 Wiper RMCR Con-
tact

115 V AC/DC Input Module
M/N 57C400

Register 0

MSB

LSB

15 14 13 12 11 10 9 8

{(rle]rfn]efr]n]n

7 6 5 4 3 2 1.0
[rlrfrfn]nfa]nfn]

M/N 57C400

(continued)
Term. Signal Description Reg.
1 O0to 115V AC Signal Input Reg 0, Bit 0
2 0to 115V AC Signal Input Reg O, Bit 1
3 O0to 115V AC Signal Input Reg 0, Bit 2
4 0to 115V AC Signal Input Reg 0, Bit 3
5 0VAC Isolated Common for bits 0
through 3
6 0to 115V AC Signal Input Reg 0, Bit 4
7 0to 115V AC Signal Input Reg 0, Bit 5
8 0to 115V AC Signal Input Reg 0, Bit 6
9 0to 115V AC Signal Input Reg 0, Bit7
10 0V AC Isolated Common for bits 4
through 7
1" 0to 115V AC Signal Input Reg 0, Bit 8
12 0to 115V AC Signal Input Reg 0, Bit 9
13 0to 115V AC Signal Input Reg 0, Bit 10
14 0to 115V AC Signal Input Reg 0, Bit 11
15 O0VAC Isolated Common for bits 8
through 11
16 0to 115V AC Signal Input Reg 0, Bit 12
17 0to 115V AC Signal Input Reg 0, Bit 13
18 0to 115V AC Signal Input Reg 0, Bit 14
19 0to 115V AC Signal Input Reg 0, Bit 15
20 0V AC Isolated Common for bits 12

through 15

Output data is contained in register 0.

24-115 V AC/DC Output
Module (M/N 57C402) and
115 V AC Output Module
(M/N 57C403 and 61C503)

Register 0

msB Lse
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|Rw|RwlawlRwlnwlnwlnwlnwlnw]Rwlnwlnw|aw|nw|aw|nw|

M/N 57C402, 57C403

and 61C503
(continued)
Term. Signal Description Register
1 0 to MAX Signal Output Reg 0, Bit 0
2 0 to MAX Signal Output Reg 0, Bit 1
3 0 to MAX Signal Output Reg 0, Bit 2
4 0 to MAX Signal Output Reg 0, Bit 3
5 MAX V AC Isolated Common for bits 0
through 3
6 0 to MAX Signal Output Reg 0, Bit 4
7 0 to MAX Signal Output Reg 0, Bit 5
8 0 to MAX Signal Output Reg 0, Bit 6
9 0 to MAX Signal Output Reg 0, Bit 7
10 MAX V AC Isolated Common for bits 4
through 7
1l 0 to MAX Signal Output Reg 0, Bit 8
12 0 to MAX Signal Output Reg 0, Bit 9
13 0 to MAX Signal Output Reg 0, Bit 10
14 0 to MAX Signal Output Reg 0, Bit 11
15 MAX V AC Isolated Common for bits 8
through 11
16 0 to MAX Signal Output Reg 0, Bit 12
17 0 to MAX Signal Output Reg 0, Bit 13
18 0 to MAX Signal Output Reg 0, Bit 14
19 0 to MAX Signal Output Reg 0, Bit 15
20 0VAC Isolated Common for bits 12

through 15

MAX = 24 V AC for 57C402 and 115 V AC for
57C403

Network Communications

Module M/N 57C404

The Neiwork module must have the DROP DEPTH
set in the application software before data can be
read or written.

REGISTER 20=DROP DEPTH (decimal) must be

greater than 0 (56 minus the
thumbwheel setting).

M/N 57C404
(continued)

register 20, bit 14=error bit, set to ON by the Net-
work module if existing DROP
DEPTH is invalid.

register 20, bit 15=processing complete bit, set to
ON when the Network module
has finished processing the
DROP DEPTH register.

DROP register formats:

DROP 0 register 4-7 = status for drops 1-55
registers 32-39 = broadcast registers

DROP 1-55 registers 0-31 = OUTPUTS (from
SLAVE) (read/write)
registers 32-63 = INPUTS (to SLAVE)
(read only)

Programming terminal interrogation: Command “s”
for status can be entered with the coax connected
and the module operating.

Drop 0 (Area) Status and Control Registers

Registers 0-3 System use only; do not use

Register 4 Drop 0 through Drop 15 Status in
bits 0 to 15

Register 5 Drop 16 through Drop 31 Status
in bits 0 to 15

Register 6 Drop 32 through Drop 47 Status
in bits 0 to 15

Register 7 Drop 48 through Drop 55 Status
inbits0to 7

Registers 8-11 System use only; do not use

Register 12 Drop Number

Register 13 Keyswitch Mode (1 = protect,
2 = set-up, 3 = program)

Register 14 Messages Received

Register 15 Receive Timeouts |

Register 16 CRC/Parity Errors

Register 17 Overrun Errors

Register 18 Abort Errors

Register 19 Messages Transmitted

Register 20 Drop Depth

Registers 21-31 System use only; do not use

Register 32 Broadcast Data — transmitted
every 2.6 msec

Register 33 Broadcast Data — transmitted
every 2.6 msec

Register 34 Broadcast Data — transmitted

every 2.6 msec

Register 35
Register 36
Register 37
Register 38
Register 39
Registers 40-63

In the master m

M/N 57C404
(continued)

Broadcast Data — transmitted
every 2.6 msec

Broadcast Data — transmitted
every 2.6 msec

Broadcast Data — transmitted
every 2.6 msec

Broadcast Data — transmitted
every 2.6 msec

Broadcast Data — transmitted
every 2.6 msec

System use only; do not use

odule, all registers are read only,

with the exception of 32-39. Register assignments
on slave modules are the same except that register

20 is read/write

2-8

and all other registers are read only.

M/N 57C404
(continued)

Memory Map

To find the sequential register number for a particu-
lar drop, use the following:

Sequential Register Offset
Register = Drop Number * 64 + (0-63) in
Number Desired Drop

Drop
Addressing
Sequential Dual Port (for use
Register Memory with NETDEF
Number image statements)
0 0 DROP 0
Registers 4-7
(comm. status
bits)
Registers 32-39
63 63 (BROADCAST)
64 0
outputs [DROP 1
31 Registers 0-63
82
inputs
127 63
128 0
outputs | DROP 2
31 Registers 0-63
32
inputs
191 63
192 DROP 3
3519 DROP 54
3520 0
outputs | DROP 55
31 Registers 0-63
32
inputs
3583 63

Drive Controller Module
(B/M 57406) Inputs and Drive
Analog 1/0 Module
(B/M 57405) Outputs

The Drive Analog I/O Module has three outputs: one
non-changeable output for current minor loop feed-
back and two D/A outputs, which are “steerable”
from the programming terminal. Drive Controlier
module inputs are READ only and must not be writ-
ten to by the application program.

57C406
Nominal Register
Function Terminal Scaling #
Sterable 1(~), 2(+) £4095=4+10VDC Not
D/A #1 {x 1 Gain) Available
Sterable 3(-), 4(+) £4095=+10VDC Not
D/A #2 (x 1 Gain) Available
Minor Loop 5(—), 6(+) +£4095=+3.3V DC Not
Available
Analog Ref. 7,8 +4095=+10V DC 4096

Analog Tach 9, 10 +3072=+5V DC 4097
Feedback

Armature *PMI +8192=4+10V DC 4098
Voltage (Scaling
Feedback Circuit)
through
Drive
Analog
Current Major PMI +4095=+10V DC 4099

Loop Feedback(Burden
(filtered current Resistor)
feedback) through

MAJOR_ | Drive
FDBK% Analog
AC Line PMI (Line 0-8130=0-10VDC 4100
Voltage Sync 4866 =460 or
Trans- 230V AC
former)
through
Drive
Analog
Current Minor PMI +4095=+10VDC 4101
Loop Feedback(Burden
(unfiltered Resistor)
current through
feedback) Drive
MINOR_ i Analog
FDBK%

“Available for use when 57408-1 is installed for fast bridge
change.

2-10

B/M 57406 and 57405

(continued)
57C406

Default Register
Function Units Value #
Tach Loss deg.a 109 4136
Threshold
PLL Max usec 2 4137
Phase Change
PLL Max pusec 4 4138
Period
Change
Bit 0 Enables N/A 0 4146
Fast Bridge (disabled)
Change

2-Channel Analog Input
Module M/N 57C409

Register Assignments

Register

Number Description Channel | Access
0 Data 0 R
1 Data 1 R
2 Current Count 0 R
3 Current Count 1 R
4 Status Register R
5 Interrupt Status and Control 0 R/W
6 Interrupt Status and Control 1 R/W
7 Period Count 0 R/W
8 Period Count 1 R/W
9 Low Pass Filter Selection 0 R/W

10 Low Pass Filter Selection 1 R/W

Status Register (READ Only) 4

15 14 13 12 11 10 ¢

7 6 5§ 4 3 2 1 0

8
CLL L1

x|R xlxlxlxlxlxl

CCLK ENABLE
CCLK ON
CCLK ON

M/N 57C409

(continued)

Register 5 (ISCR for Channel 0)

15 14 13 12 11 10 9

8 7

6 5 4 3 2 1 0
Lefx]xfxfx]=]xf<[nfmlafn]nfn]n]n]

Register 6 (ISCR for Channel 1)

15 14 13 12 11 10 9

8

7 6 5 4 3 2 1 0
Lrle]=lxfx]=TxTx]nfm[nfn]n]a]n]z]

Intercupt Line 1D

Interrupt Line Allocated

— Enable Common Clock
Interrupt Enabled

pt Flag

Low Pass Filter Selection

For register 9 (channel 0) and register 10 (channel 1)
bits 0 and 1:

Filter Corner

Data | Frequency +11%
00 300 rad/sec
01 145 rad/sec
10 79 rad/sec
11 21 rad/sec
LEDs
Color LED Description
yellow CCLK ON CCLK running on backplane
yellow CCLK Enable This card driving CCLK
yellow CSD N/A
yellow 10CK N/A
Term. Signal Description Reg.
1 +10 V = 14095 Channel 0 Input 0
2 +1V = +4095 Channel 0 Input 0
3 Channel 0 Common
4 +10V = +4095 Channel 1 Input 1
5 +1V = 44095 Channel 1 Input 1
6 Channel 1 Common
7 N/C
8 +15V +25 ma power supply (for
external use)
9 ov Common
10 -15V —25 ma power supply

2-12

Analog Output Module
M/N 57C410

Register Assignments

Register

Number Description Access
0 Channel 0 RW
1 Channel 1 RW
2 Channel 2 RW
3 Channel 3 RW

Register Bit Arrangement
15 14 18 12 11 10 9 8 7 6 5 4 3 2 1 0
Jaw] x | x | x [rw]aw|aw]aw]aw]rw]rwlaw|awfaw]aw] « |

19 9

8 7 6 5
A/D CONVERTER BIT ASSIGNMENTS
SIGN BIT
LEDs
Color LED Description
green ISOL Power 0 Ch. 0 Isolated Power Supply
OK
green ISOL Power 1 Ch. 1 Isolated Power Supply
OK
green ISOL Power 2 Ch. 2 Isolated Power Supply
OK
green ISOL Power 3 Ch. 3 Isolated Power Supply
OK

M/N 57C410

(continued)

Term. Signal Voltage Reg.
1 +5V Ch. 0 Jumper 0
2 +4095 +10V Ch. 0 Volt. Qutput
3 +8V Ch. 0 Jumper
4 +4095 4-20 ma Ch. 0 Curr. Output
5 oV Ch. 0 Common
6 +5V Ch. 1 Jumper 1
7 +4095 +10V Ch. 1 Voit. Output
8 +8V Ch. 1 Jumper
9 +4095 4-20 ma Ch. 1 Curr. Output

10 ov Ch. 1 Common

11 +5V Ch. 2 Jumper 2

12 +4095 +£10V Ch. 2 Volt. Output

13 +8V Ch. 2 Jumper

14 +4095 4-20 ma Ch. 2 Curr. Output

15 ov Ch. 2 Common

16 +5V Ch. 3 Jumper 3

17 +4095 +10V Ch. 3 Volt. Qutput

18 +8V Ch. 3 Jumper

19 +4095 4-20 ma Ch. 3 Curr. Output

20 ov Ch. 3 Common

Note: Install jumpers for indicated voltage range

(£10 V DC without jumpers).

2-14

Resolver Iinput Module
M/N 57C411

Register Assignments

Register
Number Description Access
0 Resolver Data R
1 External Latch R
Data
2 Interrupt Status R
3 interrupt Status and R/W
Control
4 Update Period R/W

Interrupt Status and Control Registers
Registers 2 and 3

15 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0
2]RJR|RIR|JR|RIJR|R|JRf[RIx|x]|x

o
o

3|]RJR|RIRW|R|R|JR|R|RIRW| x | x| x

n
]

interrupt line ID
Interrupt atlocated
Interrupt clock enable
Interrupt enabled
Module fault
Resolver not
Common clock off
Isolated power fault
External strobe reset
0 = reset

Position angle increasing
strobe status
pt flag status

LEDs
Color LED Description

yellow DIRECTION Forward or Reverse Rotation
yellow FDBK OK Resolver Electrically Connected
yellow CCLK OK CCLK running on backplane
yellow IPS OK Isolated Power Supply OK

green OK Board OK
Approx.
Term. Signal Level Description
1 26 V AC Reference Output
2 16V AC Reference Output
3 118V AC Reference Input
4 11.8V AC Reference Input
5 11.8V AC Sine Input
6 118V AC Sine Input
7 11.8V AC Cosine Input
8 118V AC Cosine Input
9 input for Strobe (Contact
Closure Req’'d)
10 Input for Strobe (Contact

Closure Req'd
ad 2-15

Field Controller Module

Register Assignments

Register

Number Description Range Access
0 Field ON (bit 0) 1o0r0 R/W
1 Voltage Stability 1 to 255 R/W
2 Current Stability 1 to 255 R/W
3 Voltage Reference 0 to 255 R/W
4 Current Reference +255 R/W
5 Current Feedback +127 R

Modbus Interface Module

M/N 57C414

Status and Control Registers

Register 0
Register 1
Register 2
Register 3
Register 4
Registers 5-11
Register 12
Register 13

Register 14
Register 15
Register 16
Register 17
Register 18
Register 19
Register 20
Register 21

Register 22
Register 23
Register 24

Registers 25-49
Registers 50-54
Registers 55-61
Register 62
Register 63

2-16

Status and Control Register 1
Status and Control Register 2
Status and Control Register 3
Status and Control Register 4
Device Status (bit 0)

Not used

Device Number

Keyswitch Mode (1 = protect),
2 = set-up, 3 = program)
Messages Received

Receive Timeouts

CRC/Parity Errors

Overrun Errors

Framing Errors

Messages Transmitted
Configuration/Update Request
Baud Rate (1200, 2400, 4800,
9600, 19200)

Response Timeout (seconds)
Number of Retries

Response Turn-around Delay
(milliseconds)

Not used

Used for Debug Mode

Not used

Module identification

(ASCII ‘GTWY?)

M/N 57C414
(continued)

Memory Map

This address map shows the relationship of the
Modbus address to the decimal register number and
the hex bus address number.

Multibus Modbus Modbus
Access Register Number Access
R 00001 - 04096 R/W
single bits
R/W 10001 - 14096 R
single bits
R/W 30001 - 31024 R
16-bit registers
R/W 40001 - 41024 R/W
16-bit registers

Modbus Decimal Hex Modbus
Register Register Bus Register
Number Number Address Designations
00001 64 2s0080
bit COIL
addressable REGISTERS
04096 319 2s027E
10001 320 2s0280
bit INPUT
addressable REGISTERS
14096 575 2s047E
30001 576 250480
word INPUT
addressable REGISTERS
31024 1599 2s0C7E
40001 1600 2s0C80
word HOLDING
addressable REGISTERS
41024 2623 2s147E
S=slot

2-17

M/N 57C414
(continued)

Register 21 must be set up before register 20.

REGISTER 21 = baud rate
(1200,2400,4800,9600,19200)

REGISTER 20 = configuration (see below)

Mss LsB
1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Jrw]rw]rwfaw]|aw[aw] « |rwirw]rw] rw] Awfrw]aw]rw]aw]

NON-ZERO FOR
UPDATE REQUEST

L 0: NORMAL MODE
1: DEBUG MODE

0: 8-BIT CHARACTER
1: 7-BIT CHARACTER

{ASCIl MODE ONLY)
0: RTU (BINARY) MODE
1: ASCII MODE

0: ODD PARITY
1: EVEN PARITY

0: PARITY DISABLED
1: PARITY ENABLED

0: 1 STOP BIT
1: 2 STOP BITS

0: SLAVE MODE
1: MASTER MODE

Register 4 Link Status
MSB Lss

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lxdelxbxfelafe]sle]elafxf=]x]xTr]

1: PORT CONFIGURED

2-18

M/N 57C414
(continued)

To convert Modbus Interface registers to hexadeci-
mal addresses which can then be monitored using
the DCS 5000 or AutoMax Executive software, per-
form the following calculations.

X = the register you want to monitor

1. For registers 00001 - 04096:
X = ([{Modbus register # — 1}/16] + 64)
For registers 10001 - 14096:
= ([{Modbus register # —1}/16] + 320)
For reg|sters 30001 - 31024:
= (Modbus register # — 29425)
For reglsters 40001 - 41024:
X = (Modbus register — 38401)
2. First, drop off any remainder from your result (X).
Then multiply that result by 2.
3. Convert the result of #2 above to hexadecimal
format.
4. To the result from #3 above add the following:
2s0000H
where s = slot number of the Interface module in
hexadecimal.
5. The result is the DCS 5000 and AutoMax equiva-
lent of the Modbus register.

Note: Registers 00001 to 14096 actually refer to bits
within a Multibus word.

24V AC/DC Input Module
M/N 57C415

Register 0

MsB LsB
15 14 13 12 11 10 9 8

fﬂlﬂIRIRIRIRIRIRI*‘IRIRIRIRIRI l J

2-19

M/N 57C415

(continued)
Term. Signal Description Register
1 0to24 VAC Signai Input Reg0, Bit0
2 0to24 VAC Signal Input Reg 0, Bit 1
3 0to24 VAC Signal Input Reg0, Bit2
4 0to 24 VAC SignalInput Reg0, Bit3
5 0V AC Isolated Common for bits 0
through 3
6 Oto24 VAC Signal Input Reg 0, Bit 4
7 0to24 VAC Signal Input Reg0, Bit5
8 0to24 VAC Signallnput Reg 0, Bit6
9 Oto24 VAC Signallnput Reg0, Bit7
10 0V AC Isolated Common for bits 4

through 7
11 0to24 VAC Signal Input Reg0, Bit8
12 0to24 VAC Signallnput Reg0, Bit9
13 0to 24 VAC Signal Input Reg 0, Bit 10
14 0to24 VAC Signal Input Reg 0, Bit 11
15 0VAC Isolated Common for bits 8
through 11
16 0to 24 VAC Signal input Reg 0, Bit 12
17 Oto24 VAC Signal Input Reg 0, Bit 13
18 0to24 VAC Signal Input Reg 0, Bit 14
19 0to 24 VAC Signal Input Reg0, Bit 15
20 OV AC Isolated Common for bits 12
through 15

Input data is contained in register 0.

Remote I/O0 Communications
Module M/N 57C416

Drop 0 (Master) Status and Control Registers
Registers 0-3 Not used

Register 4 Drop 1 through Drop 7 Status in
bits 1to 7

Registers 5-11 Not used

Register 12 Drop Number

Register 13 Keyswitch Mode (1 = protect,
2 = set-up, 3 = program)

Register 14 Messages Received

Register 15 Receive Timeouts

Register 16 CRC/Parity Errors

Register 17 Overrun Errors

Register 18 Abort Errors

Register 19 Messages Transmitted

Registers 20-511 Not used
All registers are read only.

Programming terminal interrogation:

Command “R” can be used to read the registers in a
module in the slave drop with the coax connected
and the module operating. Command S can be
used to read the status of the module.

2-20

AutoMate Interface Module

M/N 57C417
Status and Control Registers
Register 0 Status and Control Register 1
Register 1 Status and Control Register 2
Register 2 Status and Control Register 3
Register 3 Status and Control Register 4
Register 4 Device Status (bit 0-3)
Registers 5-11 Not used
Register 12 Drop Number
Register 13 Keyswitch Mode (1 = protect,
2 = set-up, 3 = program)
Register 14 Messages Received
Register 15 Receive Timeouts
Register 16 Checksum/Parity Errors
Register 17 Overrun Errors
Register 18 Framing Errors
Register 19 Messages Transmitted
Register 20 Link Configuration/Update
Request
Register 21 Link Baud Rate (1200, 2400,
4800, 9600, 19200)
Register 22 Response Timeout (seconds)
Register 23 Number of Nodes

Registers 24-49 Not used
Registers 50-59 Used for Debug Mode
Registers 60, 61 Not used

Register 62 Module Identification
Register 63 (ASCIl ‘GTWY’)
Memory Map

This address map shows the relationship of the
AutoMate address to the decimal register number
and the hex bus address number.

Multibus AutoMate AutoMate
Access Register Number Access
R 0000.00 - 0377.17 R/W
single bits
R/W 0400.00 - 0777.17 R
single bits
R/W 2000 - 3777 R
16-bit registers
R/W 4000 - 5777 R/W
16-bit registers

2-21

M/N 57C417

(continued)
AutoMate
Register Decimal Hex AutoMate
Number Register Bus Register
(Octal) Number Address Designations
0000.00 64 250080 DISCRETE
bit OUTPUTS
addressable (from
0377.17 319 2s027E AUTOMATE)
0400.00 320 250280 DISCRETE
bit INPUTS
addressable (to
0777.17 575 25047 AUTOMATE)
2000 576 250480 oyt
word REGISTERS
addressable (to
3777 1599 2s0c7E AUTOMATE)
4000 1600 2s0C80 OUTPUT
word REGISTERS
addressable (from
5777 2623 2s147e AUTOMATE)

“s” is the slot number where the module is located.
Register 21 must be set up before register 20.

REGISTER 21 = Link baud rate
(1200,2400,4800,9600,19200)

REGISTER 20 = Link configuration, update re-
quest (see below)

MsB LsB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|rwirwirwlaw] x | x | |nwlnw[nwlnw|nw]aw|nw|aw|aw]

NON-ZERO FOR
UPDATE REQUEST

0: SERIAL COMM/
AUTOMATE LINK
1: R-NET GATEWAY LINK

0: ODD PARITY
1: EVEN PARITY

0: PARITY DISABLED
1: PARITY ENABLED

0: 1 STOP BIT
1: 2 STOP BITS

0: NORMAL MODE
1: DEBUG MODE

2-22

M/N 57C417
(continued)

To convert AutoMate interface registers to decimal
register numbers which can then be monitored using
the DCS 5000 or AutoMax Executive software, per-
form the following calculations.

X = the register you want to monitor

1. For octal registers 0000.00 - 0377.17 and
0400.00 - 0777.17:
X = (AutoMate register # + 64)
For registers 2000 - 3777 and 4000 - 5777:
X = (AutoMate register # — 448)
2. The result is the DCS 5000 and AutoMax equiva-
lent of the register.

Allen-Bradley Interface
Module M/N 57C418

Status and Control Registers

Register 0 Status and Control Register 1

Register 1 Status and Control Register 2

Register 2 Status and Control Register 3

Register 3 Status and Control Register 4

Register 4 Device Status (bit 0)

Registers 5-11 Not used

Register 12 Station Number

Register 13 Keyswitch Mode (1 = protect,
2 = set-up, 3 = program)

Register 14 Messages Received

Register 15 Receive Timeouts

Register 16 Checksum/Parity Errors

Register 17 Overrun Errors

Register 18 Framing Errors

Register 19 Messages Transmitted

Register 20 Link Configuration

Register 21 Baud Rate (1200, 2400, 4800,
9600, 19200)

Register 22 Response Timeout (seconds)

Register 23 Number of Retries

Register 24 ACK/NAK Timeout

(25 ms. increments)
Registers 25-49 Not used
Registers 50-59 Used for Debug Mode

2-23

M/N 57C418

(continued)
Register 60 Software Part Number
Register 61 Revision Level (ASCH)
Register 62 Module Identification
Register 63 (ASCII ‘GTWY")

Registers 21-24 must be set up before register 20.

REGISTER 21 = Link baud rate
(1200,2400,4800,9600,19200)

REGISTER 20 = configuration (see below)

MSB Lse
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Jrwl < faw] < [x [x]« [x {rw]rw | rw | rw | rwiaw]aw]aw]

NON-ZERO FOR
UPDATE REQUEST

0: PARITY DISABLED
1: PARITY ENABLED

0: NORMAL MODE
1: DEBUG MODE

Register 4 Link Status
15 14 13 12 11 10 9 8 7 6 S 4 3 2 1

0
Ddxfefeds]slale[x]alxTe]sfTx]n]

1: PORT CONFIGURED

Memory Map

This address map shows the relationship of the A-B
Interface address to the decimal register number and
the hex bus address number.

A-B Interface A-B
Multibus File Register Interface
Access Number Access
R File BO, registers 0 to 255 R/W
single bits
R/W File B1, registers 0 to 255 R
single bits
R/W File NO, registers 0 to 1023 R
16-bit registers
R/W File N1, registers 0 to 1023 R/W
16-bit registers

2-24

M/N 57C418

(continued)
A-B Interface Decimal Hex A-B Interface
File Register Register Bus File
Number Number Address Designations
0 64 2s0080
bit
addressable B0
255 319 2s027E
0 320 2s0280
bit
addressable Bt
255 575 2s047E
0 576 250480
word
addressable NG
1023 1599 2s0C7E
0 1600 2s0C80
word
addressable N1
1023 2623 2s147E

To convert Allen-Bradley interface registers to deci-
mal register numbers which can then be monitored
using the DCS 5000 or AutoMax Executive software,
perform the foliowing calculations.

X = the register you want to monitor

1. For file NO registers:
X = (file NO register # + 576)
For file N1 registers:
X = (file N1 register # + 1600)
For file BO registers:
X = (file BO register # + 64)
For file B1 registers:
X = (file B1 register # + 320)
2. The result is the DCS 5000 and AutoMax equiva-
lent of the register.

2-25

5-24 V DC Input Module
M/N 57C419

Registers 0 and 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
OfRIRJR|JR)JR|RIR]|R|RIR]|R[R{R]RBR]R

HeR|R|{RIR}IRIR]|RIR|R{R]|R|R|R]R}R

Register 2

IRlxlx|xIalaln|n|a|nw|nwlaw|aw|a|a[n1

"1

INTERRUPT
ENABLE B20

INTERRUPT
ENABLE B19

INTERRUPT
ENABLE B18

INTERRUPT
ENABLE B17

—

LATCH
STATUS B17

LATCH
STATUS 818

LATCH
STATUS B19

LATCH
STATUS B20
1

“1 These bits are controlled by the operating system and must not be set by the
user.

B17-B20 refer to field connections.

Register 3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[<] <]x]x jrwlrw[rw]aw] « [x | x | x |aw]rw]ew]aw]

LATCH.____|
EDGE B17
LATCH

EDGE B18
LATCH

EDGE B19
LATCH

EDGE B20

0: OFF TO ON
1: ON TO OFF
LATCH RESET
B17*

LATCH RESET
B18*

LATCH RESET
B19 *

LATCH RESET
B20 *

* A Latch must be acknowledged by writing a 0 to the proper bit after the latch has
occurred.

B17-B20 refer to field connections.

2-26

M/N 57C419
(continued)

Term. Signal

Description

S5or24VDC
0 to V supply
0 to V supply
0 to V supply
0 to V supply
50r24VDC
0 to V supply
0 to V supply
0 to V supply
0 to V supply
Sor24VDC
0 to V supply
0 to V supply
0 to V supply
0 to V supply
50r24VDC
0 to V supply
0 to V supply
0 to V supply
0 to V supply

[N T S G o S ST S o
QOWONOONHWN=L2OODDNDNOHWN =

Isolated Voltage for bits 0 to 3
Signal input for bit 0

Signal input for bit 1

Signal input for bit 2

Signal input for bit 3

Isolated Voltage for bits 4 to 7
Signal input for bit 4

Signal input for bit 5

Signal input for bit 6

Signal input for bit 7

Isolated Voltage for bits 8 to 11
Signal input for bit 8

Signal input for bit 9

Signal input for bit 10

Signal input for bit 11

Isolated Voltage for bits 12 to 15
Signal input for bit 12*

Signal input for bit 13*

Signal input for bit 14

Signal input for bit 15*

*Reg. 1 only, these 4 inputs are also the latch inputs.

Terminal strips A (Reg. 0) and B (Reg. 1) share the

same layout.

5-24 V DC Output Module
M/N 57C420

Registers 0 and 1

mMSB

LsB

15 14 13 12 11 0 8 8 7 6 5 4 3 2 1 0

anhwlawlnwlawlnwlawlaﬂ aw|aw]aw]rwlaw]aw|aw]

2-27

Pulsetach Input Module
M/N 57C421B

Register and Bit Assignments

Register Bit Assignment
Number {15 8 7 0] Access
0 extended MSB R
sign
1 24-bit counter LSB R
2 MSB 16-bit timer LSB| R/W
3 11111111 MsB R/W
4 24-bit
comparator LSB} R/W
5 Interrupt status R/W
and control register
MSB LSB
6 Control R/W
MsB register LSB
7 Control R/W
MSB register LSB

Register 5 (ISCR)
15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0
| « [rw|rwirw{aw|aw]rw]aw] « Jrwirwirw[aw| « T {x]

COUNTER CLEAR
CONTROL
00: Never Clear the

unter
01: External latch
10: Comparator equal
11: After counter read

L__TIMER INTERRUPT
ENABLE

GENERATE COMMON
CLOCK

EXTERNAL LATCH
INTERRUPT ENABLE

EXTERNAL COUNT STOP
INTERRUPT ENABLE

Z PULSE AND ORIGIN INTERRUPT
ENABLE

COMPARATOR EQUAL INTERRUPT
ENABLE

PULSE MULTIPLIER
1=X4

0=Xx2

TIMER/COUNTER SELECT
1 = Timer

2 = Counter

COUNTER CLEAR INHIBIT

2-28

M/N 57C421B
(continued)

Register 6
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[rw]awlaw]rw]rwlaw]aw|aw] « | « | x | x [rw]aw]rw]aw]

! EXT LATCH

1 = Enabled

EXT COUNT STOP
1 = Enabled

Z PULSE FORWARD
1 = Enabled

|__ Z PULSE REVERSE
1 = Enabled

SELECT PULSE INPUT TYPE
0 = Two-phase shi
1 = Single channe!

COUNT STOP
0 = Reset
1 = Initiate count stop

EXT CLEAR/ORIGIN SELECT
0 = Origin
1 = Clear

Z PULSE POLARITY

0 = Positive
1 = Negative
POLARITY FOR EXT COUNT STOP
0 = Positive
1 = Negative

CLEAR/ORIGIN INPUT SELECT

POLARITY OF EXT LATCH
0 = Positive transition
1 = Negative transition

COUNTER CLEAR
0 = Reset
1 = Initiate clear counter

2-29

M/N 57C421B
(continued)

Register 7
15 14 13 12 11 10 3 8 7 6 5 4 3 2 1 0

|aw]rw]rwlrw]rw]ew] s [R s [alr]a]afrir]
R

PULSE INPUT
DIRECTION

0=0K
1 = Error (CCLK OFF)

ORIGIN/CLEAR INPUT STATUS _|
0 = Reset
1 = Clear/Origin asserted

EXTERNAL COUNT STOP
INPUT STATUS

eset
1 = Timeout
EXTERNAL LATCH INPUT STATUS
= t
1 = Latch asserted

COUNTER = COMPARATOR STATUS
= Reset

1 = True

gOUNTER < COMPARATOR
1 = True

gOUNTER > COMPARATOR

1= True
BORROW STATUS
0 = Reset

1 = Borrow occurred

CARRY STATUS
0 = Reset
1 = Carry occurred

15 EXT ORIGIN CLEAR STATUS RESET; 0 =

14 NAL COUNT STOP STATUS RESEI’ 0 = Reset
13 EXTERNAL LATCH STATUS RESET

12 COUNTER = COMPARATOR STATUS RESET; 0 = Reset

11 BORROW STATUS RESET; 0 = Reset

10 CARRY STATUS RESET: 0 = Reset

LEDs

Color LED Description

yellow COUNT STOP External Count Stop Input
yellow LATCH External Latch Input
yellow CLEAR External Clear Input
yellow FORWARD Forward rotation sensed
yellow REVERSE Reverse rotation sensed

green CCLK OK CCLK running on backplane

2-30

M/N 57C421B

(continued)
Term. Signal Description
1 N/C
2 0to +12V DC Channel +A 12V Input
3 Oto +12V DC Channel +B 12 V Input
4 0to +12 Vv DC Channel +Z 12V Input
5 N/C
6 0to +5V DC Origin Clear 5 V Input
7 ov Origin Clear Common
8 Oto +5V DC External Latch 5V Input
9 oV External Latch Common
10 Oto +5V DC External Count Stop SV In- -
put
11 ov External Count Stop Com-
. mon
12 0to +5VDC Channel +A 5V Input
13 N/C
14 Dto +5or +12 Channel A Common or -A
15 0to +5VDC Channel +B 5V Input
16 N/C
17 0 to +5 or +12 Channet B Common or -B
18 0to +5VDC Channel +Z 5V Input
19 N/C
20 0to +5 or +12 Channel Z Common or -Z

N/C=no connection.

2-31

2-Axis Servo Module
M/N 57C422B

Register Assignments

Register 0 Encoder set-up
Register 1 Drive set-up

Register 2 Switch set-up

Register 3 Proportional gain
Register 4 Integral gain

Register 5 Velocity loop gain
Register 6 Feedforward gain
Register 7 Deadband compensation
Register 8 Maximum position error
Register 9 Maximum velocity error
Register 10 In-position tolerance

Registers 11, 12
Registers 13, 14
Registers 15, 16
Registers 17, 18
Registers 19, 20
Registers 21, 22
Registers 23, 24
Registers 25, 26
Register 27
Register 28
Registers 29, 30
Register 31
Register 32
Register 33
Registers 34, 35
Registers 36, 37
Register 38
Registers 39, 40
Register 64

Register 65
Register 66
Register 67
Registers 68, 69
Register 72
Register 73
Registers 74, 75
Registers 76, 77
Registers 78, 79
Register 80
Register 81
Register 82
Register 83

Registers 84, 85
Registers 86, 87
Registers 99-103

Registers 104, 105

Positive overtravel limit

Negative overtravel limit

Low speed homing reference

Command position

Command velocity

Command acceleration

Command deceleration

Gear ratio

User LEDs register

Direct drive reference command

Sync position

Maximum voltage reference

Positive linearization constant

Negative linearization constant

Feedback unwind constant

Gearing unwind constant

Gearing modes

Backlash Compensation

Interrupt Reset (for both X and
Y)

Mode

Command

Command

Interrupt enabie

Status

Fauit

Current feedback position

Current gearing position

Current velocity

Following error

Velocity error

Digital input status

Current velocity status update

period

Feedback registration position

Gearing registration position

Software version number

Interrupt status

Registers 124, 125 Master axis position increment
Registers 126, 127 Master Reference position

2-32

M/N 57C422B
(continued)

Register 128
Register 129

Register 130
Register 131

Registers 132-2046
Register 4095

Number of points in CAM table
Time between points in CAM
table

CAM Mode

Loop back point in Time CAM
table

CAM data table

Interrupt status and control (for
both X and Y)

Register assignments for X axis. For Y axis, add
2048 to the X axis register numbers (except regis-

ters 64 and 4095).

LEDs
Color LED Description
yeliow XHOME t Home Limit input

yellow X+OTRAV
yellow X—OTRAV
yellow XFAULT
yellow XF.REG
yeliow XG.REG
yeliow XENABLE
yellow XSP
yellow STAT3
yellow STAT2
yellow STAT1
yellow DIAG
green OK
yellow YHOME
yellow Y+OTRAV
yellow Y-OTRAV
yellow YFAULT
yellow YF.REG
yellow YG.REG
yellow YENABLE
yellow YSP

X Positive Overtravel Input
1 Negative Overtravel Input
A Fault Input
x Feedback Registration Input
i Gearing Registration Input
s Enable input
| Spare
CPU Status LEDs
CPU Status LEDs
CPU Status LEDs
CPU Status LEDs
Board OK
* Home Limit Input
Y Positive Overtravel Input
| Negative Overtravel Input
A Fault Input
x Feedback Registration Input
i Gearing Registration Input
s Enable Input
{ Spare

M/N 57C422B

(continued)
Term. Signal Description
1 0V (Common) from Encoder Power Supply
2 +5V from Encoder Power Supply
3 ov to Feedback Encoder
4 +5 to Feedback Encoder
5 Oto +5 +A from Feedback Encoder
6 Oto +5 — A from Feedback Encoder
7 Oto +5 +B from Feedback Encoder
8 Oto +5 ~B from Feedback Encoder
9 Oto +5 +Z from Feedback Encoder
10 0to +5 —Z from Feedback Encoder
11 oV to Gearing Encoder
12 +5 to Gearing Encoder
13 0to +5 +A from Gearing Encoder
14 Oto +5 —A from Gearing Encoder
15 Oto +5 +B from Gearing Encoder
16 Oto +5 — B from Gearing Encoder
17 Oto +5 +Z from Gearing Encoder
18 Oto +5 —Z from Gearing Encoder
19 N/C
20 N/C
21 +12/15V DC from Drive Reference Power
Supply
22 —-12/15V DC from Drive Reference Power
Supply
23 0V (Common) to Drive Reference & From
Power Supply
24 +12/15VDC to Drive Reference
25 Watchdog Contact Output
26 Watchdog Contact Output
27 0 to 24 V DC/ACHome Limit Switch input
28 0V (Common) Home Limit Switch Common
29 0 to 24 V DC/AC Positive Overtravel Limit
Switch Input
.30 0V (Common) Positive Overtravel Limit
Switch Common
31 0 to 24 V DC/AC Negative Overtravel Limit
Switch Input
32 0V (Common) Negative Overtravel Limit
Switch Common
33 0 to 24 V DC/AC Drive Fault Input
34 0V (Common) Drive Fault Input
35 0t024 VDC Feedback Registration Input
36 0V (Common) Feedback Registration Com-
mon
37 0tc 24 VDC Gearing Registration Input
38 0V (Common) Gearing Registration Com-
mon
39 N/C
40 N/C

Note: Both the X and Y axis have the same terminal
layout. The uppermost connector on the module is
for the X axis.

2-34

MaxPak Hi

High Speed Link
Module M/N 57C424

Dual Port Register Assignments

Register 0

Register 4

Register 12
Register 13
Register 14
Register 15
Register 16
Register 17
Register 18
Register 19
Register 20
Register 26
Register 27
Register 28
Register 29
Register 30
Register 31
Register 40
Register 41
Register 42
Register 43
Register 44
Register 45
Register 60
Register 62
Register 63
Register 64
Register 70
Register 71
Register 75

Register 76
Register 80
Register 81
Register 100
Register 101
Register 102
Register :
Register 354
Register 355
Register 400
Register 401
Register :

Status and control

Link active

Device number

Keyswitch state

Messages received

Receive timeouts

Checksum errors

Overrun errors

Framing errors

Messages transmitted

Parity errors

Comm. error flags
Configuration error flags
MaxPak 11l status byte
Transmit active
Command/status change
Comm. error reset

Total input on-line registers
Total input off-line registers
Total input on-line bits

Total input off-line bits

Total output registers

Total output bits

Fatal error #

Module ASCHI ID “HS”

Module ASCHIl ID"L”

Module version number

of registers to send to MaxPak (il
of bits to send to MaxPak |1l
of registers to receive from
MaxPak 1l

of bits to receive from MaxPak Ilf
Max. receive timeout (in msec.)
Speed loop time period (in ticks)
Data receive register 0

Data receive register 1

Data receive register 0

Data receive register 254

Data receive register 255

Data receive packed bits reg. 0
Data receive packedbits reg. 1

2-35

Register 415
Register 1100
Register 1101
Register 1102
Register :
Register 1354
Register 1355
Register 1400
Register 1401
Register :
Register 1415

2-36

Data receive packed bits reg. 15
Data transmit register 0
Data transmit register 1
Data transmit register 2

Data transmit register 254

Data transmit register 255

Data transmit packed bits reg. 0
Data transmit register 1

Data transmit packed bits reg. 15

Toledo Scale Interface
Module M/N 57C428

Register 21 must be set up before register 20.

REGISTER 21 = baud rate
(1200,2400,4800,9600,19200)

REGISTER 20 = Update request
(non-zero for update request)

Register 4 Link Status
Tis[w]re]r2] 1]ofofs 7 els]efs]f2]1]el

1: PORT CONFIGURED

Register Assignments

Register 4 Link status

Register 14 Number of good messages
received

Register 15 X

Register 16 Number of checksum or parity
errors

Register 17 Number of overrun errors

Register 18 Number of framing errors

Register 20 Configuration/update request

Register 21 Baud rate

Register 22 Link timeout

Register 64 Request status

Register 65 Message counter

Register 66 Status byte “A”

Register 67 Status byte “B”

Register 68 Status byte “‘C”

Registers 69, 70 Indicated weight
Registers 71,72 Tare weight

LEDs
Color LED Description
green OK Module is operational

2-37

AutoMax R-Net
Processor Module
M/N 57C429

Register Organization
Register Description R/W

Register 0-63 Status and Control R/W
Register 64-2623 AutoMate Image R/W
Register 2624-3583 Not used X
Register 3584-4095 Command Buffer R

Status and Control Registers

Register 0 System use only

Register 1 System use only

Register 2 System use only

Register 3 System use only

Register 4 Drops on line status (15-0)

Register § Drops on line status (31-16)

Register 6 Drops on line status (47-32)

Register 7 Drops on line status (63-48)

Register 8 System use only

Register 9 System use only

Register 10 System use only

Register 11 System use only

Register 12 Node number

Register 13 Slot number

Register 14 Messages received count

Register 15 Receive timeouts count

Register 16 CRC error count

Register 17 Overrun error count

Register 18 lllegal message count

Register 19 Messages transmitted count

Register 20 Lost token count

Register 21 Max. node number

Register 22 Response timeout (in seconds)

Register 23 Current token time

Register 24 Max. token time

Register 25 Reserved for system use

Register :

Register 49 Reserved for system use

Register 50 Transmit global data enabling
reg. for AutoMate image reg. 71

Register 51 Transmit global data enabiing
reg. for AutoMate image reg. 72

Register 52 Transmit global data enabling
reg. for AutoMate image reg. 73

Register 53 Transmit global data enabling
reg. for AutoMate image reg. 74

Register 54 Reserved for system use

Register :

Register 59 Reserved for system use

Register 60 LED error code

Register 61 Reserved for system use

Register 62 Reserved for system use

Register 63 Reserved for system use

2-38

AutoMate image Registers

Registers 64-575 AutoMate Registers 0000.00-
0777.17 (octal)

Registers 576-2623 AutoMate Registers 2000-
5777 (octal)

2-39

AutoMax Processor Module
M/N 57C430, M/N 57C431
and M/N 57C435

Connection Information

Ali Processor module ports except for the port la-
beled “PROGRAMMER/PORT B” on the leftmost
Processor in the rack are available to the user to
connect to an external device which will be con-
trolied by application tasks running on the Proces-
sor. Refer to the Enhanced BASIC Language
Instruction Manual (J-3675) for more information.
Note that with AutoMax Processor modules, you can
use the statements OPEN “PORTA” or OPEN
“PORTB".

Note: If you do not enable bit 15 (hardware hand-
shaking) in the SETUP parameter of the OPEN state-
ment, only pins 2, 3 and 7 of the port you OPEN will
be meaningful.

Pin # /O Function

2 O This signal contains transmitted
data.

3 | This signal contains received data.

4 O Transmit status. This signal is true

whenever the transmitter is sending
characters. It is used to “bracket” a
character transmission. It can be
used to enable/disable any type of
external equipment, such as a tri-
state transmit modem, which re-
quires an enable signal to output
characters. This signal is meaningful
only if hardware handshaking has
been enabled.

5 | This signal enables the transmitter. It
must be true for the tansmitter to
send a character. This signal is typi-
cally used for hardware flow control.
It is meaningful only if hardware
handshaking has been enabled.

6 | This signal enables the receiver. it
must be true in order for the re-
ceiver to accept characters. If the
signal becomes false while a mes-
sage is being received, any charac-
ters being received will be deleted
and an error will be reported to the
application software. This signal is
meaningful only if hardware hand-
shaking has been enabled.

7 Signal common.

2-40

M/N 57C430, 57C431,
and 57C435
(continued)

Pin # 1/O Function

10 O This signal is an isolated +12 Volt
which can be used as an enable or
equipment ready indicator. The sig-
nal is always on whenever power is
applied to the Processor.

20 O This signal indicates receiver status.
The signal is true whenever the re-
ceiver can accept characters, i.e.,
when the receive buffer is not full.
When the receive buffer fills to
within a specified limit, the signat is
turned off. The signal can be used
to disabie another transmitter. It is
meaningful only when hardware
handshaking has been enabled.

LEDs

Color LED Description

green BAT.OK On-board battery status
green OK Module is opertional

Power Supply Module
M/N 57C491 and
M/N 57C493

57C491
Color LED Description
green POWER Power applied indicator

yellow P/S READY All voltages present
yellow SYSTEM READY All AutoMax Processors OK
red BLOWN FUSE Line fuse indicator (ON =

open)
57C493
Color LED Description
green POWER Power applied indicator
red FAULT AutoMax Processor watch-

dog is not present or output
voltage is out of range

2-41

Local I/O Head
M/N 61C22 and 61C23

The ports on the 61C22 can connect to four Digital
Rails. Note that input cards and output cards cannot
be mixed on the same Rail. Electronic input cards
cannot be used with the 61C22.

LOCAL HEAD
RAIL=REGISTER #
01 2 3
RAIL
SLOT O
REGISTER 3
RAIL
SLOT O
REGISTER 2
RAIL
SLOT 0
REGISTER 1
RAIL
SLOT 0
REGISTER 0
LEDs
Color LED Description
green POWER Power ON indicator
green COMM Comm. w/host OK
red RAIL FAULT 0 Rail 0 fault
red RAIL FAULT 1 Rail 1 fault
red RAIL FAULT 2 Rail 2 fault
red RAIL FAULT 3 Rail 3 fault

2-42

4-Input
4-20 mA Analog Rail Module
M/N 61C345

Registers 0, 1, 2 and 3 (READ only)

15 14 18 12 11 10 9

EIE IHIRIRIRIHIRIRIHIHIHIRIRIRI |

12 BITS OF CONVERTED ANALOG DATA
OVER-RANGE é‘l =QOVER-RA! ?
UNDER-RANGE (1 =UNDER-RANGE)

LEDs
Color LED Description

green POWER OK All req’d power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

Term. Signal Description Reg.
1 0to 20 mA Input Channel 0 0
2 0 Common Channel 0
3 N/C
4 0to 20 mA Input Channel 1 1
5 0 Common Channel 1
6 N/C
7 0to 20 mA Input Channel 2 2
8 0 Common Channel 2
9 N/C

10 0to 20 mA Input Channel 3 3

11 0 Common Channel 3

12 N/C

4-Input

0-10 V Analog Rail Module
M/N 61C346

Registers 0, 1, 2 and 3 (READ only)

15 14 13 12 11 10 9

Ix]x Ialnlnlnlalnl [[R|RIR|RIR|R]

12 BITS OF CONVERTED ANALOG DATA
OVER-RANGE (1 =OVER-RANGI
UNDER-RANGE (1 = UNDER-RANGE)

2-43

M/N 61C346
(continued)

LEDs
Color LED Description

green POWER OK All req’d power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

Term. Signal Description Reg.
1 Oto10V Input Channel 0 0
2 0 Common Channel 0
3 N/C
4 Dto10V Input Channel 1 1
5 0 Common Channe! 1
6 N/C
7 Oto10V Input Channel 2 2
8 0 Common Channel 2
9 N/C

10 Oto10V Input Channet 3 3

11 0 Common Channel 3

12 N/C

2-In/2-Out
0-10 V Analog Rail Module
M/N 61C350

Registers 0 and 1

15 14 13 12 11 10 9 8 7

6 5 4 3 2 1 0
Dlxfxfxfnjr]nfr]nfa]n]njr]afa]n]
-

12 BITS OF ANALOG OUTPUT DATA

Registers 2 and 3 (READ only)

15 14 13 12 11 10 9 8

7. 6 5 4 3 2 1 0
L]<]nfrjefn]a]nfa]nfr]n]nja]nfn]

12 BITS OF ANALOG OUTPUT DATA
OVER-RANGE (1 =OVER-RANGE}
UNDER-RANGE (1=UNDER-RANGE)

M/N 61C350
(continued)

LEDs
Color LED Description

green POWER OK All req'd power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

Term. Signal Description Reg.
1 Oto10V Output Channel 0 0
2 0 Common Channel 0
3 N/C
4 Oto10V Output Channel 1 1
5 o Common Channel 1
6 N/C
7 OQtoi0V Output Channel 2 2
8 0 Common Channel 2
9 N/C
10 Qto10V Output Channe! 3 3
11 0 Common Channel 3
12 N/C
2-In/2-Out
4-20 mA Analog Rail Module
M/N 61C351

Registers 0 and 1

15 14 13 12 1t 10 9 8

L lxfx]=[rfafr]n]n IRIRIRIRIRIHIRI

12 BITS OF ANALOG OUTPUT DATA

Registers 2 and 3 (READ only)

15 14 13 12 11 10 9

BE IHIRIRIHIRIRIRIRIRIRIRIRI J_l

12 BITS OF ANALOG OUTPUT DATA
OVER-RANGE é1 =OQVER-RANGE)
UNDER RANGE (1 =UNDER-RANGE)

2-45

M/N 61C351
(continued)

LEDs
Color LED Description

green POWER OK All req’d power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

Term. Signal Description Reg.
1 4t0 20 mA Output Channel 0 0
2 0 Common Channel 0
3 N/C
4 4 to 20 mA Output Channel 1 1
5 0 Common Channel 1
6 N/C
7 4 to 20 mA Output Channel 2 2
8 0 Common Channel 2
9 N/C
10 4 t0 20 mA Output Channe! 3 3
11 0 Common Channel 3
12 N/C
4 Output
4-20 mA Analog Rail Module
M/N 61C365

Registers 0, 1, 2 and 3 (READ only)

15 14 13 12 11 10 9 8

7 6 S 4 3 2 1 0
Lxfx]x}xfr]njn]a]afa]nfa]nfa]n]n]

12 BITS OF ANALOG OUTPUT DATA

LEDs
Color LED Description

green POWER OK All req’d power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

2-46

M/N 61C365

(continued)
Term. Signal Description Reg.
1 4t0 20 mA Output Channel 0 0
2 0 Common Channel 0
3 N/C
4 4 t0 20 mA Output Channel 1 1
5 0 Common Channel 1
6 N/C
7 4 to 20 mA Output Channel 2 2
8 0 Common Channel 2
9 N/C
10 4 to 20 mA Output Channel 3 3
1 0 Common Channel 3
12 N/C
4 Output
0-10 V Analog Rail Module
M/N 61C366

Registers 0, 1, 2 and 3 (READ only)

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
Llxf=f{x]n]nfr]rfn]nfnfr]r]afna]n]

12 BITS OF ANALOG OUTPUT DATA

LEDs
Color LED Description

green POWER OK All req’'d power present
green COMM OK Communication w/host OK

Note that the MODE switch must always select local
head mode for operation with the DCS/AutoMax Re-
mote Head.

2-47

M/N 61C366

(continued)

Term. Signal Description Reg.
1 Oto10V Output Channel 0 0
2 0 Common Channel 0
3 N/C
4 Oto10V Output Channel 1 1
5 0 Common Channel 1
6 N/C
7 Oto10V Output Channel 2 2
8 0 Common Channel 2
9 N/C

10 Oto10V Output Channel 3 3

11 0 Common Channel 3

12 N/C

115 V AC Input Module
M/N 61C500

Register 0 (READ only)

15 14 13 12 11 10 9 8 7

[rlafr]rfr]nfna]nfs

6 5 4 3 2 1.0
[rlrfafrfnr]afn]

Term. Signal Description. Reg.
1 0to 115V AC Signal input Reg 0, Bit 0
2 O0to 115 V AC Signal Input Reg 0, Bit 1
3 0to 115V AC Signal Input Reg 0, Bit 2
4 0to 115V AC Signal Input Reg 0, Bit 3
5 0V AC Isolated Common for bits 0
through 3
6 O0to 115 V AC Signal Input Reg 0, Bit 4
7 0to 115 V AC Signal Input Reg 0, Bit5
8 0to 115V AC Signal Input Reg 0, Bit 6
9 0to 1156 V AC Signal Input Reg 0, Bit 7
10 0V AC Isolated Common for bits 4
through 7
11 0to 115V AC Signal Input Reg 0, Bit 8
12 0to 1156 V AC Signal Input Reg 0, Bit 9
13 0to 115 V AC Signal Input Reg 0, Bit 10
14 0to 115V AC Signal Input Reg 0, Bit 11
15 0VAC Isolated Common for bits 8
through 11
16 0to 115V AC Signal Input Reg 0, Bit 12
17 0to 115V AC Signal Input Reg 0, Bit 13
18 0to 115 V AC Signal Input Reg 0, Bit 14
19 0to 115V AC Signal Input Reg 0, Bit 15
20 0V AC Isolated Common for bits 12

through 15

Input data is contained in Register 0.

2-48

24 V AC/DC

Input Module

M/N 61C515

Register 0 (READ only)

15 14 13 12 11 10 9 8

0

[rlnlrfr]afr]nfn

7 6 5 4 3 2 1
[rla]r]nfr]r]r

[=]

Term. Signal

Description Reg.

0 to 24 V AC/DC
0 to 24 V AC/DC
0 to 24 V AC/DC
0 to 24 V AC/DC
0V AC

0 to 24 V AC/DC
0 to 24 V AC/DC
0 to 24 V AC/DC
0 to 24 V AC/DC

O oo~ND bW -

10 OVAC

11 0to 24V AC/DC
12 0to 24 V AC/DC
13 0to 24 V AC/DC
14 0to 24 V AC/DC
15 O0VAC

16 0to 24 V AC/DC
17 0to 24 V AC/DC
18 0to24 V AC/DC
19 0to 24 V AC/DC
20 OVAC

Input data.is contained in

Signal Input
Signal Input
Signal Input Reg 0, Bit 2
Signal Input Reg 0, Bit 3
Isolated Common for bits
0 through 3

Signal Input Reg 0, Bit 4
Signal Input Reg 0, Bit 5
Signal Input Reg 0, Bit 6
Signal Input Reg 0, Bit 7
Isolated Common for bits
4 through 7

Signal Input Reg 0, Bit 8
Signal Input Reg 0, Bit 9
Signal Input Reg 0, Bit 10
Signal Input Reg 0, Bit 11
Isolated Common for bits
8 through 11

Signal Input Reg 0, Bit 12
Signal Input Reg 0, Bit 13
Signal Input Reg 0, Bit 14
Signal Input Reg 0, Bit 15
Isolated Common for bits
12 through 15

Reg 0, Bit 0
Reg 0, Bit 1

Register 0.

2-49

Current Input Module

Register
Number

M/N 61C540

Description

>
o
]
o
]
»

[} J i G G G PP Qi G
OQOWOND MVArWN—-OQOQOWONOOELWN=LO

NN NN
NOONHLW N

WOLWN N
- O W

2-50

Channel 0 A/D Data
Channel 1 A/D Data
Channel 2 A/D Data
Channel 3 A/D Data
Channel 4 A/D Data
Channel § A/D Data
Channel 6 A/D Data
Channel 7 A/D Data
Channel 8 A/D Data
Channel 9 A/D Data
Channel 10 A/D Data
Channel 11 A/D Data
Channel 12 A/D Data
Channel 13 A/D Data
Channel 14 A/D Data
Channel 15 A/D Data

High High Alarm Status

High Alarm Status
Low Alarm Status

Low Low Alarm Status

Out of Range Status

Channel Configuration Status

Configuration Status
Channel Number

Maximum Scaling Value
Minimum Scaling Value

Number of Samples
High High Alarm
High Alarm

Low Alarm

Low Low Alarm

Configuration Command

DODDDIVI DVDIDNIDDIIDIVDDODID

Current Input Module
M/N 61C540 (continued)

Terminal

Block

Lable Current Input Function

V1 Primary Power Source for Current Loops
G1 Primary Power Source Return
0A Current Loop 0: Power

0B Current Loop 0: 4-20 mA Input
S Current Loop 0: Cable Shieid
S Current Loop 1: Cable Shield
1A Current Loop 1: Power

1B Current Loop 1: 4-20 mA Input
2A Current Loop 2: Power

2B Current Loop 2: 4-20 mA Input
S Current Loop 2: Cable Shield
S Current Loop 3: Cable Shield
3A Current Loop 3: Power

3B Current Loop 3: 4-20 mA Input
4A Current Loop 4: Power

4B Current Loop 4: 4-20 mA Input
S Current Loop 4: Cable Shield
S Current Loop 5: Cable Shield
5A Current Loop 5: Power

5B Current Loop 5: 4-20 mA Input
6A Current Loop 6: Power

6B Current Loop 6: 4-20 mA Input
S Current Loop 6: Cable Shield
S Current Loop 7: Cable Shield
7A Current Loop 7: Power

78 Current Loop 7: 4-20 mA Input
8A Current Loop 8: Power

8B Current Loop 8: 4-20 mA Input
S Current Loop 8: Cable Shield
S Current Loop 9: Cable Shield
9A Current Loop 9: Power

oB Current Loop 9: 4-20 mA Input
10A Current Loop 10: Power

10B Current Loop 10: 4-20 mA Input
S Current Loop 10: Cable Shield
S Current Loop 11: Cable Shield
11A Current Loop 11: Power

11B Current Loop 11: 4-20 mA Input
12A Current Loop 12: Power

128 Current Loop 12: 4-20 mA Input
S Current Loop 12: Cable Shield
S Current Loop 13: Cable Shield
13A Current Loop 13: Power

13B Current Loop 13: 4-20 mA Input
14A Current Loop 14: Power

14B Current Loop 14: 4-20 mA Input
S Current Loop 14: Cable Shield
S Current Loop 15: Cable Shield
15A Current Loop 15: Power

158 Current Loop 15: 4-20 mA Input
V2 Back-up Power Source for Current Loops
G2 Back-up Power Source Return

Voltage Input Module

Register
Number

M/N 61C542

Description

Access

- -
= O0OWONONLON=O

[1N Y S Gy G G G Gy
CWOND AL WN

N DN
W -

N
o

NN N
~No o

WWMN N
- OO

2-52

Channel 0 A/D Data
Channel 1 A/D Data
Channel 2 A/D Data
Channel 3 A/D Data
Channel 4 A/D Data
Channel 5 A/D Data
Channel 6 A/D Data
Channel 7 A/D Data
Channel 8 A/D Data
Channel 9 A/D Data
Channel 10 A/D Data
Channel 11 A/D Data
Channel 12 A/D Data
Channel 13 A/D Data
Channel 14 A/D Data
Channel 15 A/D Data

High High Alarm Status

High Alarm Status
Low Alarm Status

Low Low Alarm Status

Out of Range Status

Channel Configuration Status

Configuration Status
Channel Number

Maximum Scaling Value
Minimum Scaling Value

Number of Samples
High High Alarm
High Alarm

Low Alarm

Low Low Alarm

Configuration Command

BDIDIDDIDD DIDIDIDVDIDIIDIDVDODID

Voltage Input Module
M/N 61C542 (continued)

Terminal
Block
Lable

Voltage Input Function

0A
oB
S

S
1A
1B
2A
2B
S

S
3A
3B
4A
4B
S

S
5A
58
6A
6B
S

S
7A
7B
8A
8B
S

S
9A
oB
10A
10B
S

S
11A
11B
12A
12B
S

S
13A
138
14A
14B
S

S
15A
15B

Voltage Circuit 0:
Voltage Circuit
Voltage Circuit
Voitage Circuit
Voltage Circuit
Voltage Circuit
Voitage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voitage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voitage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit
Voltage Circuit 10:
Voltage Circuit 10:
Voitage Circuit 10:
Voltage Circuit 11:
Voltage Circuit 11:
Voitage Circuit 11:
Voltage Circuit 12:
Voltage Circuit 12:
Voltage Circuit 12:
Voltage Circuit 13:
Voltage Circuit 13:
Voltage Circuit 13:
Voltage Circuit 14:
Voltage Circuit 14:
Voltage Circuit 14:
Voltage Circuit 15:
Voltage Circuit 15:
Voltage Circuit 15:

COOCOPONNNDPDPOINNELELOWONONNS ==

Analog Common

0: +10V Input
: Cable Shield
: Cable Shield
: Analog Common
: £10V Input
: Analog Common
: +10V input
: Cable Shield
: Cable Shield
: Analog Common
: +10V Input
: Analog Common

+10V Input

: Cable Shield

: Cable Shield

: Analog Common
: +10V input

: Analog Common

+10V Input

: Cable Shield
: Cable Shield

Analog Common
+10V Input
Analog Common
+10V Input

: Cable Shield

: Cable Shield

: Analog Common
: +£10V Input

Analog Common
+10V Input
Cable Shield
Cable Shield
Analog Common
+ 10V Input
Analog Common
+10V Input
Cable Shield
Cable Shield
Analog Common
+10V Input
Analog Common
£ 10V Input
Cable Shield
Cable Shield
Analog Common
+10V Input

2-53

Register
Number

RTD Module
M/N 61C544

Description

>
Q
o
3
@
*»

[} YO Qi G G QP G G i i gy
CWON®D ML WN-LOOOINONLWON—-O

WWNNNDNDDON DN
S OWONDAAH W N

2-54

Channel 0 A/D Data
Channel 1 A/D Data
Channel 2 A/D Data
Channel 3 A/D Data
Channel 4 A/D Data
Channel 5 A/D Data
Channel 6 A/D Data
Channel 7 A/D Data
Channel 8 A/D Data
Channel 9 A/D Data
Channel 10 A/D Data
Channel 11 A/D Data
Channel 12 A/D Data
Channel 13 A/D Data
Channel 14 A/D Data
Channei 15 A/D Data

High High Alarm Status

High Alarm Status
Low Alarm Status

Low Low Alarm Status

Out of Range Status

Channel Configuration Status

Configuration Status

Channel Number
Reserved

Reserved

Number of Samples
High High Alarm
High Alarm

Low Alarm

Low Low Alarm

Configuration Command

DIVIVDIDIY DDV IDITIDIDDIODIDDOIDD

RTD Module
M/N 61C544 (continued)

Term.
Block
Pin RTD Function RTD Function
Number Ch. 0-7 D-Shell Ch. 8-15 D-Shell
1 Current Out Ch. 0 Current Out Ch. 8
2 Current Return Ch. 0 Current Return Ch. 8
3 RTD Voltage (+) Ch. 0 RTD Voitage (+) Ch. 8
4 RTD Voltage (—) Ch. 0 RTD Voltage (—) Ch. 8
5 Shield Shield
6 Shield Shield
7 Current Out Ch. 1 Current Out Ch. 9
8 Current Return Ch. 1 Current Return Ch. 9
9 RTD Voltage (+) Ch. 1 RTD Voltage (+) Ch. 9
10 RTD Voltage (—) Ch. 1 RTD Voltage (—) Ch. 9
1 Current Out Ch. 2 Current Out Ch. 10
12 Current Return Ch. 2 Current Return Ch. 10
13 RTD Voltage (+) Ch. 2 RTD Voltage (+) Ch. 10
14 RTD Voltage (=) Ch. 2 RTD Voltage (—) Ch. 10
15 Shield Shieid
16 Shield Shield
17 Current Out Ch. 3 Current Out Ch. 11
18 Current Return Ch. 3 Current Return Ch. 11
19 RTD Voltage (+) Ch. 3 RTD Voltage (+) Ch. 11
20 RTD Voltage (—) Ch. 3 RTD Voltage (—) Ch. 11
21 Current Out Ch. 4 Current Out Ch. 12
22 Current Return Ch. 4 Current Return Ch. 12
23 RTD Voitage (+) Ch. 4 RTD Voltage (+) Ch. 12
24 RTD Voltage (—) Ch. 4 RTD Voltage (—) Ch. 12
25 Shield Shield
26 Shield Shield
27 Current Out Ch. 5 Current Out Ch. 13
28 Current Return Ch. 5 Current Return Ch. 13
29 RTD Voltage (+) Ch. 5 RTD Voltage (+) Ch. 13
30 RTD Voltage (—) Ch. 5 RTD Voltage () Ch. 13
31 Current Out Ch. 6 Current Out Ch. 14
32 Current Return Ch. 6 Current Return Ch. 14
33 RTD Voltage (+) Ch. 6 RTD Voltage (+) Ch. 14
34 RTD Voltage (—) Ch. 6 RTD Voltage (—) Ch. 14
35 Shield Shield
36 Shield Shield
37 Current Out Ch. 7 Current Out Ch. 15
38 Current Return Ch. 7 Current Return Ch. 15
39 RTD Voltage (+) Ch. 7 RTD Voltage (+) Ch. 15

40 RTD Voltage (—) Ch. 7 RTD Voltage (—) Ch. 15

2-55

8-Channel Isolated
Thermocouple and Low Level
Input Module M/N 61C605

Memory Map

Hex Bus Register

Address | Function Name Description

2580000 Write Interrupt enable

280000 Read |Data ready Read data ready
status

280001 Write | Command Write analog data
command

280001 Read |Status Read analog data
status

280002 Read |A/D data (low) |Read analog data
low byte

280003 Read |A/D data (high) | Read analog data
high byte -

Note: The 61C605 is programmed using BASIC
IOWRITE statements and IOREAD% functions.

Data Ready Register
LOCATION: BASE + 0

7 6 5 4 3 2 1)
DATA COMMAND
(] « [« []« [«]« o]
0 = DATA/STATUS NOT VALID
1 = DATA/STATUS VALID
1 = COMMAND REGISTER NOT READY,

0 = COMMAND REGISTER READY

Command Register
LOCATION: BASE + 1
7 6 5 4 3 2 1 0

OPERATING
LMODE I GO lFORMATl MODEI cJc I CH3 I CH2 | CH1 I

CHANNEL ADDRESS
CJC SELECT

1 = SEQUENTIAL MODE
0 = RANDOM MODE

0 = 2'S COMPLEMENT
1 = SIGN + MAGNITUDE

GO 0= GAINOF1
1 = GAIN OF 2

0 = NORMAL OPERATING MODE
1 = CALIBRATION MODE

2-56

M/N 61C605

(continued)
Status Register
LOCATION: BASE + 1
7 6 5 4 3 2 1 0
[Pst T s T ss | s¢ [oF [ona]onz]oni]
CHANNEL ADDRESS
0 = DEGREES CELSIUS

1 = DEGREES FAREN-
HEIT

STATUS BIT 4
STATUS BIT §
STATUS BIT 6
STATUS BIT 7

Term. Description
1 N/C
2 N/C
3 N/C
4 Channel 0 High
5 Channel 0 Low
6 —-12V DC
7 Channei 1 High
8 Channel 1 Low
9 -12V DC
10 Channel 2 High
1 Channel 2 Low
12 —-12VDC
13 Channel 3 High
14 Channel 3 Low
15 —-12VDC
16 N/C
17 N/C
18 N/C
19 N/C
20 Ground
21 Ground
22 N/C
23 Channel 4 High
24 Channel 4 Low
25 -12V DC
26 Channel 5 High
27 Channel 5 Low
28 —-12V DC
29 Channel 6 High
30 Channel 6 Low
31 -12VDC
32 Channel 7 High
33 Channel 7 Low
34 —12v DC
35 N/C
36 N/C

-57
N/C =no connection. 25

16-Channel Analog Input
Module M/N 61C613

Register Assignments

Location (M+0) Status/error from module;
command from software

Location (M+1) Command from software

Location (M+2) Return value from module or
software

Location (M+3) Not ready/ready from module

M = base address in Multibus (byte) format.

Note that these registers cannot be monitored.

Term Signal Description
1 N/C

2 + Signal Channel 0
3 — Signal Channel 0
4 N/C

5 N/C

6 N/C

7 N/C

8 + Signal Channel 1
9 — Signal Channel 1
10 N/C

1 N/C

12 N/C

13 N/C

14 + Signal Channel 2
15 — Signal Channel 2
16 N/C

17 N/C

18 N/C

19 N/C

20 + Signal Channel 3
21 — Signal Channel 3
22 N/C
23 N/C
24 N/C
25 N/C

26 + Signat Channel 4
27 — Signal Channel 4
28 N/C

29 N/C

30 N/C

31 N/C
32 + Signal Channel 5
33 — Signal Channel 5
34 N/C

35 N/C
36 N/C

2-58

M/N 61C613

(continued)
Term. Signal Description
37 N/C
38 + Signal Channe! 6
39 — Signal Channel 6
40 N/C
41 N/C
42 N/C
43 N/C
44 + Signal Channel 7
45 — Signal Channel 7
46 N/C
47 N/C
48 N/C
49 + Signal Temp Sensor
50 — Signal Temp Sensor

Terminal layout is shown for second connector; third
connector has same layout (add 8 to Channel desig-
nation numbers above). Note that the first connector

is not used.

2-59

Section
Programming
Reference

30

BASIC
Language Quick Reference

This section is an alphabetical listing of statements
and functions in Reliance® Enhanced BASIC Lan-
guage. The format of each listing is organized as fol-
lows. Each listing begins with the keyword. The line
following the keyword begins with a letter designa-
tion indicating the type of instruction:
(s) = BASIC statement (may be allowed in
CONTROL BLOCK also)
(f) = BASIC function (may be allowed in
CONTROL BLOCK also)
(c) = BASIC configuration task statement
(for AutoMax versions up to and in-
cluding 2.1)
After the letter designation comes a description of
the listing and the format of the listing. Fields in cap-
ital letters must be entered as shown. This includes
any special characters attached to fields, e.g., “%".
Fields shown in lower-case represent specific infor-
mation the programmer must enter in upper-case.
Note that the underscore character “_ " is a valid al-
phanumeric character used for clarification purposes
only, i.e., to divide words at logical points.

Example:

The function
BLOCK_MOVE@(souroe%, dest%, size)

could be implemented in an IF-THEN-ELSE state-
ment in the following manner:
1000 IF BLOCK MOVE@(NETW 1 _32%, NETW_2 32%, 32) THEN
sToP - -~
ELSE
11000
END_F
Following the listing format is a description of the
fields the programmer must enter and the variable
types permitted. At the very end of each listing is an
example.

For detailed information about the BASIC fanguage,
refer to J-3675.

Variable Types
Five types of variables are used in BASIC:

1. Single integer (16-bit) variables (value range
—32768 — +32767)
Terminating character: %

2. Double integer (32-bit) variables (value range
—2147483648 — +2147483648)
Terminating character: !

3. Real variables (value range 9.2233717 x 108 to
5.4210107 x 10720 and —9.2233717 x 1018 to
—2.7105054 x 10-20)

Terminating character: none

4. Boolean (1 bit) variables [value range TRUE (ON)
or FALSE (OFF))
Terminating character: @

5. String variables (value range 1 — 255 characters,
must begin with letter or underscore)
Terminating character: $

BASIC also permits array variables of up to four di-
mensions. Array subscripts must be positive integer
variables or expressions in the range of 0 — 32767.

BASIC Language Listing

ABDEF

(c) Defines a variable for the Allen-Bradley® Inter-
face module (M/N 57C418).

ABDEF var_name[SLOT =slot__number, FILE=file, &
REGISTER =register__number, BIT=bit _number]

var_name = integer, real or boolean variable name for register or bit; inte-
gers and reals limited to integer files; booleans fimited to binary
files

siot_number = siot number of the interface module

file = file designation for the dual port interface area; must be enclosed in sin-

gle or double quotes:

Register Number

File Range
B0=Binary file 0 0< =256
B1=Binary file 1 0< =265
NO=Integer fils 0 0<=1023
N1=Integer file 1 0<=1023

register__number = register number within the file
bit number = bit number (0 — 15} within the register; specified for booleans
only

Example:
1000 ABDEF RETURN%[SLOT=8, FILE=N1, REGISTER=975]

ABS
() Returns absolute value of an expression in real
or integer format, depending upon input format.

ABS(expression)}

expression = numeric (integer or real)

Example:
1000 VALUE1=ABS(VALUE%*2)
ASC%
(f) Returns decimal ASCII value of single character
string.
ASC%{string)

string = string variable or expression

Example:
1000 NUMBER% =ASC%(STRING1$)

3-2

ATN
(f) Returns value (in real format) equal to arctan-
gent of the input.

ATN({expression)

expression = numeric (integer or real) representing radians

Example:
1000 RADIANS = ATN(ANGLE)

BCD__IN%

(f) Returns decimal value of BCD input.
BCD__IN%{expression)

expression = single or double variable or expression; value range <9999 hex

Example:
1000 SWITCH_VALUE%= BCD_IN%(INPUT_CARD%)

BCD_ OUT%
(f) Returns BCD value of a decimal number.
BCD__OUT%{expression)

expression = single or double variable or expression; value range <9999 hex

Example:
1000 IN_VALS= BCD_OUT%(SWITCH_VALS%)

BINARY$
(f) Returns the binary form of the input as a string
of 1s and Os.

BINARY$(expression)

expression = integer or integer expression

Example:
1000 BITSS = BINARYS(NUMBER_1%)

BIT_CLR@

(f) Tests if bit is OFF (FALSE) at specified bit posi-
tion.
BIT_ CLR@(variable, bit__number}

variable = singie or double integer
bit_number = bit within the variabie to test: 0 — 15 for single integer, 0—
31 for doubie integer

Example (in IF-THEN-ELSE statement):
1000 IF BIT_CLR@(BIT_VALS%.2) THEN
2500
ELSE
3000
END_IF

3-3

BIT__MODIFY@

(f) Sets or clears the specified bit in the specified
variable based on the selected option. Function is
TRUE if bit change operation is completed. Function
is FALSE if bit change operation is not completed.
FALSE can occur if the specified variable is forced
or if the bit is already in the correct state.

BIT_MODIFY@(variable, bit_aumber, option)

variable = single or double integer variabie

bit_number = bit within the variable to test; 0 — 15 for single integer, 0 —
31 for double integer

option = defines the change to be made to the bit; integer or boolean expres-

sion
Option 0 = unconditionally set bit to 0
1 = unconditionally set bit to 1
2 = itbitis 0, then set to 1
3 = ifbitis 1, then setto 0

Example (in IF-THEN-ELSE statement):
1000 IF BIT_MODIFY@(BIT_VALS%,Z,SYSTEM_RUNNING@) THEN
3000

ELSE
4000
END_IF

BIT__SET@
(f) Tests if specified bit is ON (TRUE).

BIT__SET@{variable,bit_number)

variable = single or double integer variable
bit_number = bit within the variabie to test; range 0 — 15 for single integer,
0 — 31 for double integer

Exampie (in IF-THEN-ELSE statement):
1000 IF BlT_SET@(BIT_VALS%.1) THEN
2000
ELSE
3000
END_IF

BLOCK_ MOVE@

() Moves a block of registers to and from the net-
work.

BLOCK_ MOVE@(source, dest, size)

source = boolean, integer, double integer, or real variable or one-dimensional
integer array specifying starting point of registers to move
dest = integer variable or i ional array ifying starting point of
area to which registers are to be moved
size = number of registers (16-bit words) to move

Example (in IF-THEN-ELSE statement):
1000 IF BLOCK_MOVE@(NETW_1_32%, NETW_2_32%, 32) THEN
STOP
ELSE
11000
END_IF

3-4

CHR$

(f) Returns a string character equal to decimali
ASCII value of the input expression.

CHR${expression)
P = integer i q permitted; must be terminated
with H)
Example:

1000 A$=CHR$(41H)

CLOSE

(s) De-allocates a channel or port.
CLOSE #device__number

device__number = logically igH (gh OPEN device num-
ber; range 1 — 255

Example:
1000 CLOSE #1
CLR__ERRLOG

(f) Clears the entire error log for the task, regard-
less of the number of logged errors.

CLR_ERRLOG
Example:

1000 CLR__ERRLOG
COMMON

(s) Defines a common variable accessible to all
tasks in the system.
COMMON variable

variable = simple or subscripted variable of any type; more than one variable

is permitted in the it by ; string varia-
bie length can be specified by adding the ing i i

after the variable, or directly between the variable and the array
specification:

n

where n is the maximum string length (range 1 — 255); it not spec-
ified, default maximum is 31.

Example:
1000 COMMON COIL@, STRINGS:15(100), NUM2!

CONVERT%

(f) Converts data formats

CONVERT% (src__variable, src__subscript, dest_variable, dest__subscript, &
num_of_words, mode)

scr_variable = the variable that selects where to get data from. This parameter
may be a scalar or an array of any data type. If src__variable is an
array, it sould be the base name and any data type character only.
src_subscript = only used if the src_variable i an array. If determines where in
the array to begin reading. If not an array, the value should be 0.
dest variable = the variable that selects where to move the data. This parameter
- may be a scalar or an array of any data type. If dest_ variable is
an array, it should only be the base name and any data type char-
acter.
dest_subscript = only used if destination_variable is an array. It determines where
- in the array to begin writing. !f not an array, the value should be

3-5

num__of_words = selects the number of words to move.
mode = determines the mode of operation.

Value Function
[Move data with no change in format
1 Convert from Motorola Floating Point to IEEE for-
mat
2 Convert from IEEE Floating Point to Motorola for-
mat
4 Word swap (0102H to 0201H)
8 Long word swap (01020304H to 04030201H)
9 Motorola to IEEE followed by long word swap
10 Long word swap followed by IEEE to Motorola

Example:
STATUS@ = CONVERT%(SRC_ARRAY, 10, DST__ARRAY, 20, 60, 9)

cos

(f) Returns value (in real format) equal to cosine of
input.
COS(expression)

expression = numeric (integer or real) representing radians

Example:
1000 COS(ANGLE)

DATA
(s) See READ-DATA.

DELAY

(s) Delays program execution by specified time
period.
DELAY n units

n = ari ic expression or that is to an integer result
units = type of unit to delay program execution; available units are HOURS,
MINUTES, SECONDS, and TICKS {1 TICK = 5.5 milliseconds)

Exampie:
1000 DELAY § TICKS
END
(s) (c) Denotes physical end of program; required in
Control Block programs.
END
Example:
20000 END
EVENT NAME (software)

(s) Defines a software event; used with SET and
WAIT ON.

EVENT NAME = event _name

event _name = symbolic name for an event

Example:
2000 EVENT__NAME = SW_EVENT_1

EVENT NAME (hardware)

(s) Defines a hardware event; used with SET and
WAIT.

EVENT NAME = event _name
INTERRUPT__STATUS = I/O_vaﬁaMe
TIMEOUT = timeout_count

event_name = symbolic name given to particular event
|fO__variable = name of a symbol that the address of an
interrupt register on a module that handles interrupts
timeout_count = specifies the maximum amount of time that can pass before
a hardware event occurs; range 1 — 32767 ticks (1 tick =
8.5 milliseconds)

Example:
1000 EVENT NAME = MARKER__ PULSE .
INTERRUPT__STATUS = RESOLVER_INT_REG%
TIMEOUT = 100

EXP
() Returns a real value equal to (e ** expression),
where e = 2.71828.

EXP(expression)

expression = numeric (integer or real) expression

Example:
1000 NUMBER = EXP(2'3}

FINDVAR!
(f) Accepts a variable name as a string expression
and returns a pointer to that variable.

FINDVARvamame$)

varname$ = a string expression for the name of the variable to find.

Example:
POINTER! = FINDVAR!(VARIABLE_NAMES)

FIX

(f) Returns the whole part of a real number.
FIX{expression)
expression = a real variable or expression

Example:
1000 WHOLE_PART = FIX(REAL__VALUE)

FOR-NEXT

(s) Performs repetitive program looping based on
parameters specified.

FOR variable = expression 1 TO expression_2, &
STEP expression_3

NEXT variable

variable = simple numeric variable used as loop index

expression 1 = initial value of index; any numeric expression

expression 2 terminating value of index; any numeric expression
pression_ 3 ional; i value of index; any numeric expres-

sion; default is +1

Example:
1000 FOR M% = 1100 TO 1500 STEP 100

3000 NEXT M%

GATEWAY_CMD_ OK@

(f) Boolean function used for register transfers to
interface modules. Used with VARPTR! function.

GATEWAY_CMD_OK@(status.cmd_code,slave_drop. &

slave_reg,master_var, num_ regs)

status = integer variable name where gateway command is stored
cmd_code = variable name or exp: i D i sent to in-
tertace module; must be type integer
slave_drop = variable name or expression of type integer; device address of
the slave for which the command is intended
slave_reg = a string variable or expression describing the starting register in
the slave that is to be read or written
master_var = variable name (using VARPTR! function) or expression repre-
senting the address of the first register in the master from or
to which data is to be written; must be type double integer
num_regs = variable name or expression defining the number of registers to
be transferred; must be of type integer

Example (including VARPTR! function, in IF-THEN-

ELSE statement):
1500 MSTR__REG! = VARPTR{MASTER)
2000 IF NOT GATEWAY_CMD_OK@(REI’_STAT1%,MOD REG%,
SLVDROP%.SLVREGS.MSTR_REG!.XFER SIZE";T) THEN
2500 -
ELSE
3000
END_ IF

o @0 0o o 0o

GBLDEF

(c) Defines common variables accessed through the
Network Communications module (M/N 57C404 or
M/N 57C404A). Position information is stored in a
separate file with the extension .NET.

GBLDEF variable {SLOT =s{, NETWORK =“n"}
{. NET__NAME =name}]

variable = the name that will be used in this drop to reference the network varia-
ble; all variable types except string are supported: afthough reals and
double integer variables can aiso be used, it is strongly recommended
that they be avoided because of the possibility that all 32 bits will not
transfer in one operation.

s = siot that ins the C ication module (M/N 57C404 or
S7C404A) in this rack; range 0-15.
n = name of the .NET file from which to extract the rest of the definition for this

variable; range is a single letter from A to Z in quotation marks; if not speci-
fied, default is A.

name = the name that will be used on the network to reference the network varia-
ble; this field is used only when you want the name of the network varia-
ble to be different on the network (“"name” in the .NET file) than it is in this
rack; the name must be unique within the network; if the fieid is not speci-
fied, the defautt is “variable™.

Example:
60 GBLDEF REF_1% [SLOT=3, NETWORK ="B", NET_NAME = SPEED%)

3-8

GET
(s) Inputs a single character from a device into a
string variable.

GET #n:EMPTY =m, string__variable

n = the logical number assigned to a device using an OPEN statement; if not
entered, default is PORTA on the Processor module on which the task
resides

m = :EMPTY=m is an optional parameter; m specifies line number to which
to transfer control if the channel is empty

string _variable = a string variable which will be loaded with one character

from the device

Example:
1000 GET #2:EMPTY =1100, A$
GOSUB-RETURN

(s) GOSUB unconditionally transfers program con-
trol to the specified line number untii RETURN state-
ment. RETURN returns program control to first
numbered program line following the GOSUB or ON
GOSUB statement that caused program control to
be diverted to a particular error-handling routine.

GOsSUB n
RETURN
n = integer or integer expression representing line number

Example:
1000 GOSUB 2000

3000 RETURN

GOTO

(s) Unconditionally transfers program control to
specified line number.

GOTO n
n = integer or expression representing line number
Example:
1000 GOTO 2000
HEX$
() Returns the hexadecimal value of the input as a
string.
HEX$(expression)
expression = integer or integer expression

Example:
1000 HEX_VALs = HEX$(X%)

39

INCLUDE

(s) Inserts a DOS file containing statements into the
task as it is compiling.
INCLUDE “fitename.INC"

filename = name of the DOS file ining the 1o be i
drive and subdirectory specification cannot be included; the file it-
self must have only one statement per line and must not have line
numbers as these will be g by the in
of 1, beginning with the INCLUDE statement line number; no IN-
CLUDE statements are permitted in the file itself; the extension
JINC is required in the filename

Example:
1000 INCLUDE "IODEFS.INC"

IF-THEN-ELSE

(s) Conditionally executes statements following
THEN or transfers program control based on the re-
suits of the relational expression. If the expression is
true, the statement following THEN is executed. If
the expression is false, the statement following
ELSE is executed.

IF boolean__exp THEN
statement
ELSE
statement
END_IF

boolean_exp = boolean variable or d pression; if this
must be extended to the second line [and the ampersand (&)
added to the end of the line to indicate it continues], all of
the following lines except the last must aiso inciude the & at
the end
= either prog line to be or BASIC or series
of by or colons

Example:
1000 IF (A > 3) THEN
3000
ELSE
A=3
END_IF

INPUT

(s) Reads data from a device or channel.
INPUT #n:EMPTY=m, input_list

n = optional; logical device number assigned using OPEN statement; range 1
— 2565; default is Processor PORTA
m = parameter :EMPTY=m is optional and specified only for channels and
not devices; specifies line number to which to transfer control if the
channel is empty
input_list = list of variables to be read, separated by commas; simple or sub-
- scripted variables

Example:
10000 INPUT #1:EMPTY =10200, A%,B%

3-10

IODEF (standard addressing)

(c) Defines I/O in local rack using standard
DCS5000/AutoMax addressing.

1ODEF variable__name[SLOT =siot_number, &
REGISTER=reg_ number, BIT=bit_number)

variable_ name = integer, double integer or boolean variable
slot_number = slot number of the 1/O module in the local chassis; range 0
- 15
reg__number = register number or the 1/0 module; range 0 — 32767 16-bit
registers; default is 0 if not specified
bit_number = bit number in the register; specified for booleans only; range [}
—15

Example:
1000 JODEF DIGITAL__IN%[SLOT=3, REGISTER=1, BIT=4]

IODEF (hexadecimal addressing)

(¢) Defines 1/O in a local rack using hexadecimal
addressing.
IODEF variable_ name[ADDRESS =hex__addressH, BIT= bit__number]
hex_address = specific hexadecimal address of the I/O location; must be a
word (16 bits) or even address with the lower order bit equal
to zero; the address always starts with 2, foliowed by the
hexadecimal slot number and the four-digit hexadecimal byte
number
variable_name = integer, double integer or boolean variable
bit_number = bit number in the register; specified for booleans only; range [
—15

Exampie:
1000 IODEF RELAY_1 @[ADDRESS =260000H,8IT=1]

IOREAD%

() Returns an integer value obtained by reading
data from an |/O module.

|IOREAD%%(option,addressH)
option = integer variable or expression that defines the type of READ access
to perform
option 1 = byte read
option 2 = double byte read:
address = LSB

address + 1 = MSB
(used for foreign 1/O modules only}
option 3 = double byte read:
address = MSB
address + 1 = LSB
option 4 = 32-bit word read:
address = MSB
address + 1 = next byte
address + 2 = next byte
address + 3 = LSB
address = double integer variable or expression that contains the address
data is t0 be read from; range =220000H

Example:
1000 X% =IOREAD%(2, 220000H)

3-11

IOWRITE

(s) Outputs data to an I/O module.
'IOWRITE%(option, data, addressH)
option = integer variable or expression that defines the type of READ access

to perform

option 1 = byte read

option 2 = double byte read:
address = LSB

address + 1 = MSB
(used for foreign 1/O modules only)
option 3 = double byte read:
address = MSB
address + 1 = LSB
option 4 = 32-bit word read:
address = MSB
address + 1 = next byte
address + 2 = next byte
address + 3 = LSB
data = integer variable name or expression defining data to output
address = double integer variable or expression that contains the address
data is to be read from; range 22200004

Example:
1000 IOWRITE(, DATA__1,230000H)
LEFTS
() Returns a substring of specified length from the
leftmost portion of a string.
LEFT${string, string_length)

string = a string variable or expression; string variables must be surrounded
by single or double quotes
string__length = the number of characters to take from the left side of the
string

Example:
1000 SUB_STRING = LEFT${'ABCDEFG',4)

LEN%

(f) Returns a value equal to the character length of
the specified string variable or expression.
LEN%(string)

string = a string variable or expression
Example:
1000 LENGTH% = LEN%({'STRING1')
LET
(s) Assigns a value to a variable.
LET variable = expression

variable = simple or subscripted variable of any type
o & y

P P

Example:
1000 LET SPEED% = 25
LN

(f) Returns a real value (in real format) equal to the
natural log of the input.
LN{expression)

expression = numeric (integer or real) expression

Example:
1000 NATURAL_LOG = LN(REFERENCE! + GAIN%}

3-12

LOCAL (simple or subscripted variable)

(s) Defines a variable used in the local application
task only; opposite of COMMON.

LOCAL variable

variable = simple or subscripted variable of any type; more than one variable
is p in the if sep by string varia-
ble length can be specified by adding the following immediately
after the variable, or directly between the variable and the array
specification:

n

where n is the maximum string length (range 1 — 255); if not spec-
ified, default maximum is 31.

Example:
1000 LOCAL ABC%, STRING1$:50, STRING2$:10(100)

LOCAL (tunable variable)

(s) Defines a tunable variable used in the local ap-
plication task only.

LOCAL slmple_varlable[CURHENT:value_1 JHIGH =value_2. &
LOW=vaive_ 3, STEP=value_4]

simple__variable = tunable variable of integer, double integer or real type

value_1 = initial current vaiue
valus_2 = the highest value the variable can achieve
value_3 = the lowest vaiue the variable can achieve

the amount that the operator can change the value by increment-
ing or decrementing it through the executive software

Example:
1000 LOCAL TENSION_GAIN%{CURRENT = 25,HIGH=50,LOW=10, &
STEP=5]
MEMDEF

(c) Defines common variables which do not have
physical I/O associated with them. These variables
are cleared (set to 0, FALSE, or OFF) during a STOP
ALL condition.

MEMDEF variable

variable = simple or subscripted variable of any type; multiple variabies are
permitted if sep by

Example:
1000 MEMDEF ERROR_MESSAGES, SHEET__COUNT!
MID$

(H Returns a substring from a string, starting and
ending with the specified character positions.

MID$(string, start, end)

string = string variable or exp! ion; string vari must be by
single or double quotation marks

start = starting character position of substring

end = ending character position of the substring

Example:
1000 SUBSTRING_‘IS = MID$('ABCDEFG',2.3)

3-13

MODDEF

(c) Defines 1/O accessed through the Modbus inter-
face module (M/N 57C414).

MODDEF var_name[SLOT =slot, REGISTER =register]

var_name = integer or boolean variable

slot = slot number of the 10 module

register = register number on the I/O module; register value range:

integer variables: 30001 — 41024
boolean variables: 1 — 14096

Example:
1000 MODDEF COILREF%[SLOT =7 REGISTER=30001]

NETDEF

(c) Defines common variables accessed through the
Network Communications module (M/N 57C404 or
M/N 57C404A).

NETDEF var__namefSLOT = slot, DROP =drop,REGISTER =register, &
BIT=bit]

var_name = name of register or bit; integer or boolean variable

slot = slot number of Network module in the rack on which the task will run;
range 0 — 15

drop = drop number of the network drop where var__name is stored; range 0

register = register number on the Network module on which var__name is
stored; range 0 — 63
bit = bit number of the bit in the register number on the Network module;
range 0 — 15

Example:

1000 NETDEF LINEREF%[SLOT =6,DROP =0,REGISTER =32,BIT =0}
NEXT
See FOR-NEXT.

NVMEMDEF

(¢) Defines common variables not associated with
physical I/O and that retain their values in the event
of a power failure or STOP ALL condition.

NVMEMDEF variable

variable = simple or subscripted variable of any data type; multiple variables
are permitted if by

Example:
1000 NVMEMDEF REV__COUNT!, GEAR_RATIOS%(10,10)

ON ERROR GOTO

(s) Unconditionally transfers program control to
specified statement line if a non-fatal error occurs.
ON ERROR GOTO line__number

line_number = line number where control should be transferred in the event
of an error; typically where an error-handling routine begins

Example:
1000 ON ERROR GOTO 2000

3-14

ON GOsuB

(s) Conditionally transfers program control to a
subroutine at any one of the specified line numbers
based on the result of an integer expression.

ON expression GOSUB fine__number

expression = integer variable or arithmetic expression that results in an inte-
ger value
line_ number = line number to which control is transferred depending upon
the evaluated expression; multiple line numbers are separated
by commas; see RETURN

Example:
1000 ON GAIN% GOSUB 2000,3000,4000

ON GOTO

(s) Conditionally transfers program control to one
of the specified line numbers based on the result of
an integer expression.

ON expression GOTO line__number

expression = integer variable or arithmetic expression that results in an inte-
ger value; result determines which line number controi is trans-
ferred to; if result = 1, control is transferred to first line
number, etc.
line__number = line number to which control is transferred depending upon
the evaluated expression; multipie line numbers are separated
by commas

Example:
1000 ON A% GOTO 1100,1200,1300,1400

OPEN

(s) Allocates a Processor port for exclusive use
and equates a logical name with the port; used with
INPUT and PRINT statements.

OPEN “device__name” AS FILE #n,SETUP = specs,baud_ rate, &
ACCESS=status

device__name = pre-assigned character string that defines the name for the
device; PORTA or PORTB

n = number assigned to the port; range 1 — 255

specs = a imal word or integer expi ion that (a
bit pattern defining various characteristics for the device: see below
for more information on this parameter

baud rate = baud rate of device

status = optionai parameter; specifies whether this task has EXCLUSIVE or
NON EXCLUSIVE access to the device: if EXCLUSIVE, no other
task can read or write to the device until this task closes it (with
CLOSEY; if this parameter is specified as EXCLUSIVE, specs and

baud_rate must be d in p; if this p is
spacified as NON__ EXCLUSIVE, specs and baud_rate cannot be
pecitied in this tat It not specified, the default is EXCLUSIVE

315

Specifying the “specs” Parameter in OPEN State-
ments

hex number
1

I L I

15]1afsafrz]fro]ofa]sTe]sTas]2]1 0]
\

OPTIONAL TERMINATION
CHARACTER FOR INPUT
STATEMENTS

1: X-ON, X-OFF HANDSHAKE ENA-
BLED (D)

1: HARD COPY DEVICE
1: ECHO ON (D)

0: 7-BIT CHARACTERS
1: 8-BIT CHARACTERS

0: ODD PARITY (D)
1: EVEN PARITY

0: PARITY DISABLED (D)
1: PARITY ENABLED

0: 1 STOP BIT (D)
1: 2 STOP BITS

0: HARDWARE HANDSHAKING
DISABLED éDzM

1: HARDWAR NDSHAKING
ENABLED

0D00 = Default Setting

OPEN CHANNEL

(s) Equates a logical name with a data channel in
the system, creating a data path between tasks. Al-
lows tasks to communicate using the INPUT and

PRINT statements. The OPEN CHANNEL statements
in the tasks that are communicating must be exactly
the same except for the depth parameter, which is
specified only in tasks which want to input data from
the channel.

OPEN CHANNEL FOR input_or__output AS FILE #n, TYPE=(type), &
DEPYH=depth

input_or_output = specifies whether the task is reading data from the chan-
nel INPUT), or sending data through the channel (OUT-
PUT)
n = alogical number for that channel; range 1 - 255
type = list of different variable types that are to be passed through the chan-
nel; multiple types must be separated by commas:

I = single integer
D = double integer
R = real
$ = string
8 = boolean
depth = how many messages a channel or data path can hokd before it is
full; integer OF expressi only if the
task is reading data from the channel, not writing

Example:

See J-3675 for more information.

3-16

PRINT

(s) Outputs data to a device or channel; used with
the OPEN statement.

PRINT #n:FULL=m, print_list

n = fogical number assigned to device or channel using OPEN statement;
range 1 — 255; if not specified, default is PORTA

m = :FULL=m is applicable only if n is a channel and not a device and is op-
tional; m specifies the line number to which control is to be transferred if

the channel is full
print_list = list of data items to be printed sep: by or
lons
Example:

1000 PRINT #2, SPEED%, B%

PRINT USING
(s) Outputs data to a device using the specified for-
mat.

PRINT USING #n, type__ width:expression

n = jogical number assigned to device or channel using OPEN statement;
range 1 — 255; if not specified, default is PORTA
type_width = format type followed by field width with no spaces between;

format types:

L = left justify
R = right justify
C = center

Z = load leading zeros in front
D = print in decimal format

field width: integer or integer expression in the range 1 — 132;
D format field width =

integer1.integer2
integert = totat field width; range 3 — 132
integer2 = number of characters after the decimal; range 0 —
26
expression = variable expression; multiple expressions must have the
type__width parameter specified individually and must be sepa-
rated by commas

Example:
1000 PRINT USING #1, L40:STRING1$, D3.1:SPEED

PUT

(s) Outputs a single character to a device.
PUT #n, string_ variable$

n = the logical number assigned to a device using an OPEN statement; if not
specified, default is PORTA
string_ variable = string variable

Example:
1000 PUT #2, AS

READ-DATA

(s) Inputs data from a list of values, expressions,
literals, or strings in the DATA statements; also used
with RESTORE.

READ variable
DATA expression

variable = simple or subscripted variable of any type; muitiple variables must
be separated by commas
expression = expression loaded into the corresponding variable in the READ
statement; the type must match the variable type in the READ
string must be in single or dou-
ble quotes

3-17

Example:
1000 READ A%, C1!, Z$

2000 DATA 2, (83+19), “OVERSPEED"

READVAR%

() Accepts a variable name as a string end returns
the value in variable VALUE. Requires the Ethernet™
operating system in the rack.
READVAR%(vn$,value)
vn$ = a string expression for the name of the variable 1o read. It can be a boo-
lean, integer, double integer, real or string, or an array of these types.

Only one-dimensional arrays are aliowed.
value = the variable where the value read is written.

Example:
STATUS% = READVAR%(VARIABLE_NAMESS,vaIue)

REM and !

(s) Either statement can be used to document the
program with comments and explanations. ! state-
ments are downloaded with the task onto the Pro-
cessor module if the task was compiled with the
[Reconstruct option; these statements require 50
usec. to execute. The task can then be fully recon-
structed and uploaded back to the personal com-
puter at a later date. REM statements are stripped
out when the task is compiled.

REM comment
or
! comment

comment = any text

Example:
1000 REM This is a non-reconstructible comment
2000 !This is a reconstructible comment

RESTORE

(s) Restores internal data pointer to the first data
item of the first DATA statement or to the first data
item of the specified DATA statement line number.
RESTORE n
n = line number of DATA statement; integer or expression; if not specified,
default is first DATA statement in the task

Example:
1000 RESTORE 5000

3-18

RESUME

(s) Returns program control to first numbered pro-
gram line following the ON ERROR statement that
caused program control to be diverted to an error
handling routine.

RESUME

Example:
1000 RESUME

RETURN
(s) See GOSUB-RETURN.

RIGHTS

() Returns a substring of specified length from the
rightmost portion of a string.

RIGHT$(string, string_length)

string = string variable or expression; strings must be enclosed in single or
double quotation marks
string_length = the number of characters to take from the right side of the
string

Example:
1000 STRING1$ = RIGHT${"ABCDEF.4)

RIODEF

(c) Defines /O located in a remote rack.

RIODEF variablefMASTER_SLOT =master__siot,DROP =drop, &
SLOT =slot, REGISTER =register,BIT =it}

variable = integer or boolean variable
master_siot = slot number of the remote /O master module in the main, or
tocal, rack; range 0 — 15

drop = drop number of the remote 1/O rack; range § — 7

siot = slot number of the IfO module in the remote rack; range 0 — 15

register = register number on the remote I/O module; range 0 — 31; default

is 0 if not specified

bit = bit number of the /O point on the register; specified for boolean varia-

bies only; range 0 — 15

Example:
1000 RIODEF LEVEL%[MASTER_SLOT:15,DFIOP=3.SLOT=4. &
REGISTER=1]
RNETDEF

(c) Defines 1/0 in the system connected via R-NET
using the AutoMate Interface module (M/N 57C417).
RNETDEF variable{SLOT =slot, REGISTER =register]

variable = integer or boolean variable
siot = slot number of the 57C417 module; range 0 — 15
register = register number on the I/O module; format:

0000.88

where 0000 is the register number in octal, and BB is the bit num-
ber in octaf; bit number range 0 — 17

Registers reserved for integer variables:

Register Multibus R-NET

Number Access Access
2000 — 3777 /v read only
4000 — 5777 riw rjw

3-19

Registers reserved for boolean variables:

Register Multibus R-NET
Number Access Access
0000.00 — 0377.17 read only rjiw
400.00 — 777.17 riw read only

Example:
1000 RNETDEF GATEOK@[SLOT =6,REGISTER =400.00}

ROTATEL%

() Returns an integer value equal to the integer
expression that was input rotated the specific num-
ber of binary places to the left.

ROTATEL%{variable,count)
variable = a single or double integer variable or
expression

count = number of bit positions to rotate the in-
teger expression; bit 15 (or 31 for dou-
ble integers) wraps around to bit 0

Example:
1000 MOVE1% = ROTATEL%(INPUT_CARD%. 4)

ROTATER%

() Returns an integer value equal to the integer
expression that was input rotated the specific num-
ber of binary places to the right.

ROTATER%(variabie,count)

variable = a single or double integer variable or expression
count = number of bit positions to rotate the integer expression; bit 0 wraps
around to bit 15 (or 31 for double integers)

Example:

1000 SWAP1% = ROTATER%(INPUT__CARD%, 3)

SET__MAGNITUDE

(s) Assigns 16 or 32-bit hexadecimal values to vari-
ables.
SET_MAGNITUDE(varIable.vaIue)

variable = numeric simple variabie of any type
value = numeric constant or expression

Example:
1000 SET __MAGNITUDE(A%,0FFFFH)

SET-WAIT ON

(s) SET and WAIT ON allow synchronization be-
tween tasks based on the setting of an event. WAIT
ON suspends a task until an event occurs in another
task. SET makes the suspended task eligible to run.
The software EVENT NAME statement must be used
in both tasks to define the event used to synchro-
nize the tasks.

SET event_name

WAIT ON svent_name

event_name = name of event; must be defined previously in each task using
software EVENT NAME; the variable must be a common

3-20

Example:
1st Task

1000 EVENT NAME = GAIN_OVER

2000 IF GAIN>MAX__GAIN THEN SET GAIN_ OVER

2nd Task
1000 EVENT NAME = GAIN_OVER

2000 WAIT ON GAIN__OVER

SHIFTL%

() Returns an integer value equal to the integer
expression that was input shifted the specified num-
ber of the binary places to the left. Binary places va-
cated by the shift are filled with 0s.

SHIFTL%{variable,count)

variable = single or double variable or expression
count = number of bit positions to shift the integer or integer expression (shift
begins at bit 15 for single integer and 31 for double integer)

Example:
1000 LSBITS_0_4% = SHIFTL%(INPUT_CARD%JZ)

SHIFTR%

(f) Returns an integer value equal to the integer
expression that was input shifted the specified num-
ber of binary places to the right.

SHIFTR%({variabls,count)

variable = single or double variable or
expression
count = number of bit positions to shift the integer or integer expression {shift
begins at bit 0)

Example:
1000 SHIFT1% = SHIFTR%(INPUT_CARD,A)

SIN
(f) Returns the sine (in real format) of the input.

SIN(expression)

expression = numeric (integer or real) representing radians

Example:
1000 RADIANS = SIN(ANGLE)

SQRT

() Returns a real value equal to the square root of
the input and the same data type as the input.

SQRT(expression)

expression = integer or real variable or expression

Example:
1000 SQUARE_ROOT = SQRT(INPUT1)

3-21

STR$
(f) Returns a string of characters from a numeric
expression.

STRS${expression)

expression = integer or real expression

Example:
STRINGS = STRS$NUM1%°3)

START EVERY

(s) Causes periodic re-start of the task.
START EVERY n units

n = any pression or that 10 an integer result

units = units of time to delay re-start; units are SECONDS, MINUTES,
HOURS and TICKS (1 TICK = 5.5 milliseconds); the plural form of the
time unit must always be used, i.e., 1 TICKS, not 1 TICK

Example:
1000 START EVERY 20 TICKS

STOP

(s) Stops program execution. Clears all I/O (sets to
0, FALSE or OFF) in the local and remote racks.

STOP

Example:
1000 STOP

TAN

() Returns the tangent (in real format) of the input.
TAN(expression)

expression = numeric (integer or real) expression representing radians

Example:
1000 RADIANS = TAN(ANGLE)

TASK

(c) Defines for each application task the task name,
programming language, priority, Processor location,
and whether the task is critical to the operation of
the system.

TASK name[TYPE =language,PRIORITY =m,SLOT =n,CRITICAL= status]

name = name of the task, limited to 8 characters; first character must be a
letter

I ge = progs ing language the task is written in; either BASIC, PC or

CONTROL

m = priority of task execution on a scale of 4 (highest) to 11 (lowest)

n = slot number of the Processor on which the task will run; range 0 - 4

status = specifies whether the task is critical to the system, i.e., whether it
can be stopped independently (FALSE) or only via a STOP ALL com-
mand from the executive software (TRUE)

Example:
1000 TASK SPD_REGD’YPE:CONTROL.PRIORITY:S.SLOT=2. &
CRITICAL =FALSE]
THEN

(s) See IF-THEN.
3-22

VAL%
(f) Returns the integer value of a string in an inte-
ger format.

VAL%{string)

string = string variable or expression

Example:
1000 NUMBER% = VAL%(FIRST_WORDS)

TST_ERRLOG@

(f) Tests the state of the error log and loads the
number of errors into the specified variable.
TST_ERRLOG@(varlable%)

variable = integer variable that will be loaded with the number of logged er-
rors (1 to 3) 3

Example (in IF-THEN-ELSE statement):
1000 IF TST_ERRLOG@(NUM_ERRORS%) THEN
2000
ELSE
3000
END_IF

VAL
(f) Returns the real value of a string in a real for-
mat.
VAL(string)
string = string variabie or expression
Example:
1000 NUMBER = VAL(FIRST_WORDS)

VARPTR!

() Returns the address of the variable which is the

first register on the Modbus Interface module to

which or from which data is to be transferred. Used

with the GATEWAY__CMD__OK(@ function.
VARPTR!(variable)

variable = common variabie representing the physical address of the first reg-
ister on the Modbus Interface module to which or from which data
is to be transferred

Example:
1000 MSTR__REG! = VARPTRYMASTER)

WRITEVAR%

(f) Writes a value to a variable entered as a string.
Requires the Ethernet™ operating system in the
rack.

WRITEVAR%(vn$,vaius)

where
vn$ = a string expression for the name of the variable to write to. It can be a
boolean, integer, double integer, real, or string, or an array of these
types. Only one-dimensional arrays are allowed.
value = the variable that has the value 10 write; cannot be a literal.

Example:
STATUS% = WRITEVAH%(VARIABLE_NAMES, VALUE)

WAIT ON
(s) See SET-WAIT ON. 3.23

Control Block Language
Quick Reference

Note that all text must be entered in uppercase.

ABSOLUTE__VALUE
Function
OUTPUT = | INPUT |

— | ABS O

CALL ABSOLUTE__VALUE(INPUT =input%,
QUTPUT = output)

ALARM
Function
If INPUT is equal to or exceeds any of the alarm

limits, the proper ALARM output(s) are set TRUE.

HHL AHH

HL AH
—» | ALARM

LL AL

LLL ALL

CALL ALARM(INPUT =input,
HIGH_LIMIT =high_limit%,
LOW_LIMIT =low__fimit%,
HIGH_HIGH_LIMIT =high_high_limit%,
LOW_LOW _LIMIT=low_Tow_iimit%,
ALARM_HIGH =alarm__high@.
ALARM__LOW=alarm_low@,
ALARM_HIGH__HIGH=alarm__high_high@.
ALARM_LOW_ LOW=atarm__low__low@)

AMPLIFIER

Function

OUTPUT = (INPUT1°GAINT +. . .INPUTA"GAINN)/
SCALE

CALL AMPLIFIER(INPUT1 =input1%,GAIN1 =gain1%.. . .,
INPUTN =inputn%,GAINN = gainn%,SCALE =scale%.,
OUTPUT = output%)

3-24

o 0o o Q0 2o Qo Q0 Qo

o go

AND
Function
OUTPUT = INPUT1 and ... INPUTn

AND o

Maximum “n” = 8
CALL AND(INPUT1 =inputl @. &
INPUTh =inputn@, &
OUTPUT = output@)

BIT SELECT
Function
If INPUT—-OFFSET) 20 and
(INPUT —OFFSET) <15
then OUTPUT(INPUT — OFFSET) is set TRUE
All other outputs(n) are set FALSE
else
All outputs(n) are set FALSE

—_— |

OF BIT_SELECT On p—

CALL BIT_SELECT (INPUT = input%,OFFSET = offset%, &
OUTPUTO=0utputd@. . . .OUTPUTR=outputn@)

COMPARE

Function

Compares INPUT1 against INPUT2

OUTPUT__ GTR is set TRUE when INPUT1 is greater than INPUT2
OUTPUT__EQU is set TRUE when INPUT1 is equal to INPUT2
OUTPUT__LES is set TRUE when INPUT1 is less than INPUT2

— Jn GT
1o COMPARE IIE_$

CALL COMPARE(INPUT1 =input1%,INPUT2=input2%,
OUTPUT_GTR=greater_than@,
OUTPUT_EQU=equal@,

OUTPUT__LES=less_ than@)

™ oo

3-25

COUNTER
Function

OUTPUT = OUTPUT(n—~1) + INPUT(+) — IN-
PUT(-)

PR
IP
M
R

CALL COUNTER(RESET =reset@,PRESET = presety(%),
INPUT__PLUS=input_plus%,
INPUT_ MINUS=input__minus%,
OUTPUT =output%)

DIFFERENCE
Function
OUTPUT = INPUT1 ~ INPUT2

+

CALL DIFFERENCE(INPUT1 =input%,INPUT2 =input2%,
OUTPUT = outputd%)

DIFF_LAG
Function
s/wlg
LAPLACE TRANSFER FUNCTION = 1+(sflg)
R
v
| Sl o
1+(S/0LG)
——»{ WLG
WM

CALL DIFF__ LAG(INPUT = input%,wlg = wlg, WM =nnn.n,
INITIAL_ VALUE =initial_value%,RESET =reset@,
OUTPUT = output%)

3-26

fo o

fo fo Qo

FUNCTION BLOCK

Function
: . INPUT * (table—size — 1)
subscrip! =

(max—input + 1)

OUTPUT = tN%(subs) + [{Tn%(subs + 1) — Tn%(subs)} * REM

where:
Tn = Tablen
Subs Subscript of above equation

REM = Remainder of above equation

(Note: OUTPUT is the result of linear interpolation
between two points in the table.)

— M|
—

———»{ T1 FUNCTION O }——
SE
T2

CALL FUNCTION(INPUT = input%,MAX_INPUT: max__input,
SELECT =select@,TABLE1 =table1%,
TABLE2 =table2%,0UTPUT = output%)

o o

INTEGRATE
Function

Kt
LAPLACE TRANSFER FUNCTION = s

R SP
—{ K|

LP

HP Kl
PR i | JR (o]
HM S
LM

v

WM SM

CALL INTEGRATE(INPUT = input%,KI =ki, WM =nnn.n,
INITIAL_ VALUE =initial_value%,
LIMIT__PLUS =limit_pius%,
LIMIT_MINUS=timit__minus%,RESET =reset@.
HOLD_PLUS=hold_plus@,
HOLD_ MINUS =hold_minus@,
SATURATED_PLUS= saturated_ plus@.
SATURATED_ MINUS=saturated_minus@.
OUTPUT =output%}

fo o 2o f0 00 0 o O

INVERTER

Function
If ENABLE = TRUE then OUTPUT = —INPUT
else
OUTPUT = INPUT

3-27

—> | INVERTER 0 —>
EN
CALL lNVEHTER(ENABLE=enable@,INPUT= input%, &
QUTPUT = outputd)
LAG
Function
LAPLACE TRANSFER FUNCTION = —-1—
1+{s/wlg)
R
v
——] | — L OF——
1+(S/oLG)
—] WLG
WM
CALL LAG(INPUT =input%,0lg = alg, WM =nnn.n, &
INfTIAL VALUE:initIaI_value%, &

RESET =reset®,0UTPUT = output’s)

LATCH
Function

If RESET is TRUE set OUTPUT FALSE

else

If RESET is FALSE and SET is TRUE set OUT-

PUT TRUE
else if

RESET and SET are FALSE and CLOCK is TRUE

set OUTPUT to the state of INPUT

else
OUTPUT state is unchanged.

R
S
LATCH
|
CLK

o)

CALL LATCH(RESET =resst@,SET =set@,
CLOCK =clock@,INPUT =input@,
OUTPUT =output@)

LEAD_LAG
Function
LAPLACE TRANSFER FUNCTION = M
1+(s/wlg)

3-28

o o

R
v

[1+(S/oLD)

> wip 1+(S/6L6)
—® WLG

WM

CALL LEAD__LAG(INPUT =input%,wid = wid,
wlg=0lg, WM=nnn.n,

fio fo o

INITIAL_ VALUE =initial__value%,
RESET =reset@,0UTPUT =output%)

LIMIT

Function
OUTPUT =INPUT within the range LIMIT(+) to
LIMIT(—). If INPUT exceeds either limit, OUTPUT
is held at that limit and the proper SATURATED
output will be set.

LP SP
e o LIMIT o
LM SM

CALL LIMIT(INPUT = iNput%,LIMIT__ PLUS =limit_pius%,
LIMIT__MINUS =timit_ minus%,
SATURATED_PLUS = saturated_plus@.
SATURATED_ MINUS =saturated_ minus@,
OUTPUT = output®%)

o g 0o Qo

MOVE
Function

if ENABLE=TRUE then
OUTPUT1=INPUT1

OUTPUTn=INPUTN

—{ 1 o1 ———
: MOVE

In On
EN

Maximum “n” = 8
CALL MOVE(ENABLE =enable@, &
INPUT1 =input1%,0UTPUT1 = output1%, . . . &
INPUTn=inputn%,0UTPUTN = outputn%}

3-29

MULTIPLY AND DIVIDE

Function
OUTPUT=INPUT * INPUT2/INPUT3

CALL MULTIPLY_ DIVIDE(INPUT1 =input1%,
INPUT2 =input2%,INPUT3 = input3%,
OUTPUT =outputds)

fo Qo

NOTCH FILTER
Function

$2 + wn**2

LAPLACE TRANSFER FUCTION = =———————e
@ & GTo $°2 + 0n$/Q + wn*"2

R
—_— |
——)Q
— W

NOTCH o —

N

CALL NOTCH(INPUT = input%,
Q_FACTOR = q_factor,
WN — on,

RESET = reset@.
OUTPUT = output%)

2 (o 2 g0

OR

Function
OUTPUT=INPUT or ... INPUTA

OR o P———

Maximum ‘n” = 8

CALL OR{INPUT1 =inputi@,
INPUTN=inputn@,
OUTPUT =output@)

o o

PACK BITS
Function

BITn in OUTPUT is set to the state of INPUTN. If
INPUTn is not programmed, then BITn in QUT-
PUT is set FALSE.

3-30

—_——in PACK_BITS O }l—+

Maximum “n” = 15

CALL PACK_BITS(NPUTO=inputd@. . . . INPUTn=inputn@, &
OQUTPUT =outputs)

PID
Function

If MANUAL is true then
ERROR=0
10UT(n)=INITIAL_ VALUE
I IOUT(n) > LIMIT_PLUS — FEED_FORWARD then
10UT(n)=LIMIT_PLUS — FEED_FORWARD
SATURATED_PLUS =TRUE
If IOUT(n) < LIMIT_MINUS — FEED_FORWARD then
I0UT(n)=LIMIT_MINUS — FEED_FORWARD
SATURATED_ MINUS=TRUE
OUTPUT=I0UT(n) + FEED_FORWARD

Eise

ERROR=INPUT — FEEDBACK or FEEDBACK — INPUT
Incr(n)=Calculated deita change value for selected PID
algorithm (ISA or independent}

If ABSERRORI < DEAD__BAND then incr(n)=0

If ABSMner(n) > MAX _ CHANGE then

limit Incr(n) to MAX_ CHANGE

10UT(n)=Incrn) + IOUT(n—1)

it HOI.D_PLUS is TRUE and 10UT(n) > IOUT(n~1) then
IOUT(n)=10UT(n—1)

It HOLD___MINUS is TRUE and 10UT({n) < IOUT(n—1) then
IOUT(n)=I0UT(n-1)

i I0UT(n) > LIMlT_PLUS - FEED_FORWARD then
IOUT(n)=LIMIT_PLUS - FEED_FORWARD
SATURATED_PLUS=TRUE

i IQUT(n) < LIMTT_MINUS - FEED__FORWARDtheﬂ
IOUT(n):LIMIT_MINUS - FEED_FORWAHD
SATURATED_ MINUS=TRUE

OUTPUT=10UT(n) + FEED_ FORWARD

ISA

ACT
DRV
MAN

DB sP
MC
FF

HP
LP

v
I

PID

—»{FB @)

M
HM SM

——» KP
—> KI

KD
—— LT

3-31

CALL PID(ISA= { boolean literal > , ACTION= (boolean literai),
DERIVATIVE= (boolean literal) ,MANUAL =manual@,
KP=kp,KI=ki,KD=kd,LOOP_ TIME=loop__time,

INITIAL_ VALUE =initial_ value%, FEED _| FORWARD =feed _forward%,

INPUT_lnpul% FEEDBACK =feedback,

DEAD__BAND=dead_ band%,MAX_ CHANGE =max__change%,
LIMIT PLUS =limit plus% LIMIT MINUS =limit_ minus%,
HOLD PLUS=hold__ _plus@, HOLD MINUS=hoid_ I minus@,

SATURATED PLUS = saturated plus@
SATURATED MINUS =saturated_minus@,
ERROR=error"/o.0UTPUT=output°/o)

PROP__INT

fo o 9o o 0o Qo (0 00 OO Qo

R

WM
—» WLD

SP

SM

CALL PROP__INT(INPUT =input?%,KP = kp,old = wld,

WM= nnnnINITlAL VALUE=initial _vaiue%,

LIMIT__PLUS =limit plus%

LIMIT MINUS = I-rmt minus%,RESET =reset@,

HOLD PLUS =hold plus@

HOLD__MINUS =hoid minus@,

SATURATED_PLUS = saturated_pius@.
SATURATED MINUS = saturated mmus@

OUTPUT = output%)

PULSE__MULTIPLIER

Function

0 Qe o fo o Qo g0

If WORD__SIZE > 0 (Relative mode) then

If falling edge of RESET then

INPUT(n—1)= INITIAL__VALUE
INPUT(n—1)

ERROR=INPUT —
else
ERROR=INPUT

OUTPUT = (

OUTPUT = REM(n—

R
v
— |

M

WS

32767
1)

ERROR* MULTIPLIER)

CALL PULSE_ MULT(INPUT =input%,RESET =reset@, &
WORD_ ¢ SIZE =nnn,INITIAL . VALUE=initial _value%, &

MULTIPLIER

ior%,OUTPUT

AUt

3-32

RAMP
Function

For a change in INPUT, OUTPUT will ramp to-
ward the new INPUT value. During steady state
operation, OUTPUT =INPUT. Two types of RAMP
generators are provided: a normal (algebraic)
ramp and an absolute value ramp. For a normal
ramp, the accel condition is defined by an input
that is becoming more positive, and a dece! con-
dition is defined by an input that is becoming
more negative. For an absolute value ramp, the
accel condition is defined by an input moving
away from zero, and a decel condition is defined
by an input moving towards or through zero.

DR
SC RATE
ABS

CALL RAMP(INPUT =input?%,ABS_ RAMP = TRUE/FALSE,
RESET =reset@,INITIAL_ VALUE =initial_value%,
HOLD =hold@ ACCEL_RATE =accel_rate%,

DECEL_ RATE =decei_rate% SCALE = nnnnn,
OUTPUT = output%, RATE =rate%)

o o 2 fo

READ BITS
Function

This function reads data from a column in the
specified BOOLEAN data structure.

-— SN E
- COL

READ_BITS

=1 EN

CALL READ__BITS(STRUCTURE__ NAME=structure name@,
COLUMN = column%,ENABLE = enable@, -
ERROR =error@,

OUTPUT = outputi%, . . . OUTPUTN=outputn%)

fio o go

READ WORDS
Function

This function reads data from a column in the
specified INTEGER data structure.

3-33

—> SN E
— COL

: READ_WORDS

—3 EN

CALL READ WORDS(STRUCTURE NAME =structure _ name%,
COLUMN = column%,ENABLE =. enable@

ERROR =emror@,
OUTPUT! =outputt%, ...

9o o o

OUTPUTN=outputn%)

RUNNING AVERAGE

Function

(INPUT(n) + . . . INPUT(n+1))

" (REQUIRED_SAMPLES)

The QUTPUT is updated each scan with the aver-
age of the samples read for INPUT over the last
RS scans.

OUTPUT =

R DV
—— RS MX
| RUNNING__AVERAGE o
MN
CALL RUNNING _AVERAGE(REQUIRED_SAMPLES=req_sam, &
RESET= reset@ &
INPUT =input%, &
DATA_VALID=data _valid@, &
MAX VALUE max_value% MIN_VALUE =min_ value%, &
OUTPUT =output%)
SAMPLED AVERAGE
Function
[INPUT(1) + . .. INPUT(RS)]
OUTPUT = (REQUIRED_SAMPLES)
The OUTPUT is updated once every RS scans
with the average of the samples read for INPUT
during the last RS scans.
R DV
—>» RS MX
SAMPLED__AVERAGE o >
1
MN
CALL SAMPLED_AVERAGE(REQUIRED_ SAMPLES =req_sam, &
INPUT =input%, &
RESET =reset@, &
DATA_VALID=data_valid@, &
MAX VALUE max_ value%,MIN_ VALUE =min__value%, &

OUTPUT = outputss)

3-34

SCALE

Function
If CLAMP is TRUE and INPUT exceeds
INPUT__MAX or INPUT__MIN, then the value of
INPUT is clamped at the proper limit.

- * - —IMIN]
OUTPUT=(|NPUT INPUT.MIN)* (OUTPUT_MAX — OUTPUT.)+ OUTPUT_IMIN
INPUT_MAX — INPUT_MIN

—3 IMX
— IMN
] l
— OIMX
— OIMN
CL

CALL SCALE(INPUT = input%,CLAMP =clamp@,
INPUT_ MAX=input_max%,
INPUT__MIN=input _min%,
OUTPUT_IMAX = output_imax,

OUTPUT _IMIN=output_imin%,
OUTPUT =output%)

fe Q0 0 0

SCAN__LOOP

Time scanned loop (no event)
CALL SCAN_LOOP(T ICKS =ticks%)

Or hardware event

EVENT NAME=START__TASK, &
INTERRUPT_ STATUS =ISCR%,TIMEOUT =6

CALL SCAN_ LOOP(TICKS =4, &
EVENT=START__TASK)

Or software event

EVENT NAME=BEGIN
CALL SCAN__LOOP(TICKS =4,EVENT = BEGIN}

S__CURVE
Function

The S__CURVE block performs the same basic
function as the RAMP block with a jerk rate
added. If the REVERSE bit=TRUE, then the in-
put ACCEL rate will become the DECEL rate
and the input DECEL rate will become the
ACCEL rate. This is used to provide the func-
tion similar with the “motor” type RAMP block
(ABS__RAMP =TRUE). With the S__ CURVE
block, however, this function can be dynamically
controlled by the application.

R
v
H
AR
—| | ol—
DR

JR

SC RATE

REV 335

CALL S_ CURVE(INPUT =input%,RESET = reset@,
HOLD =hoid@ ACCEL_ RATE=accel_rate%,
DECEL_RATE=decel_rate%,
JERK_RATE=jerk_rate%,

SCALE =nnnnn,REVERSE =reverse@,
INITIAL_ VALUE =initial _value%,
OUTPUT = outputds,RATE = rate%)

00 0o o 00 o

SEARCH
Function

Compare INPUT against selected TABLE ele-
ments.

Search the selected table for a match accord-
ing to the comparison options selected by the
three BOOLEAN inputs COMPARE__GTR,
COMPARE__EQU and COMPARE__LES. The
search starts at the top of the table (array ele-
ment 0) and tests INPUT against each element in
the table until either a match is found or the end
of the table is reached (last element in the array).
If a match occurs, the search function is termi-
nated and the index into the table where the
match occurred is written to QUTPUT. FOUND is
then set true. If no match occurred, the OUTPUT
is set to a value of —1 and FOUND is set FALSE.

GT F
EQ

LT

— | SEARCH o>
™

SE
T2

CALL SEARCH(COMPARE _GTR= (boolean iiteral > ,
COMPARE_EQU = ¢ boolean literal > ,
COMPARE__LES= (boolean literal),

INPUT =input%,

SELECT =s6loct@.

TABLE1 = table1%, TABLE2 = table2%,
FOUND =found@,OUTPUT = output?)

0 00 Q0 fo @0 fo

SELECT
Function

QUTPUT will equal the sum of all selected inputs.
If no SELECT is true, OUTPUT =0.

— 1
——>» SE1 Maximum “n” = 8
. SELECT 0 —
in

SEn

CALL SELECT(INPUT1 =input1%,SELECT1 = selecti @,
<« - INPUTD =inputn%,SELECTN = selectn@,
OUTPUT =output%)

3-36

o

SHIFT BITS
Function

When RESET is FALSE and SHIFT is TRUE, shift
the data in the specified BOOLEAN data structure
towards the output(s), update the output(s) with
the state(s) at column MCOL — 1 and if ENABLE
is TRUE, shift the state(s) of the input(s) into col-
umn 0, else set the state(s) of column 0 FALSE.

— SN
— MCOL
——» SH
R
—> 1

SHIFT_BITS

In
EN

DV

01

On

CALL SHIFT_BITS{STRUCTURE__NAME = struc__name@,

MAX_COII'MNS= max__columns%,
RESET =reset@,SHIFT = shift@,
INPUT1 = input1@, . . . INPUTn=inputn@.

ENABLE =enable@,DATA_VALID=data_ valid@,

OUTPUTY =output1@, . . . OUTPUTR =otputn@)

SHIFT WORDS
Function

Maximum “n” = 8

o o (o o o

When RESET is FALSE and SHIFT is TRUE, shift
the data in the specified INTEGER data struc-
ture towards the output(s), update the output(s)
with the value(s) at column MCOL — 1, and if
ENABLE is TRUE, shift the data at the input(s)
into column 0, else shift zeros into column 0.

—1 SN
—{ MCOL
———1 SH

R
——(]
In
EN

11 SHIFT_WORDS 01

bv

On

MAX_ COLUMNS =max__columns,
RESET =reset@,SHIFT =shift@,
INPUT1 =input1%, . . . INPUTn=inputn,

ENABLE=enable@.DATA_VALID=data_ vaiid@,

OUTPUT1=output1%, .. . OUTPUTn = outputn)

Maximum “n” = 8
CALL SHIFI'_WORD(STRUCT URE_NAME: s(ruc_name%‘

fo 0o fo Qo o

3-37

SUMMER

Function
OQUTPUT=INPUT1 + INPUT2

+

CALL SUMMER({INPUT1 = input1%,INPUT2 = input2%, &
OUTPUT = output®%)

SWITCH

Function

If SELECT=TRUE then
OUTPUT=INTPUT1

else
OUTPUT=INPUT2

—_—] _| l_‘*__

SE
CALL SWITCH(INPUT1 =input1%,INPUT2 = input2%, &
SELECT = select@.OUTPUT = outputd%)
TRANSITION
Function

OUTPUT=TRUE when INPUT goes from off to
on

U

— | _H_ opb——

CALL TRANSITION(INPUT =input@, &
OUTPUT = output@)

3-38

UNPACK BITS
Function
QUTPUTN is set to the state of BiTn in INPUT

—* In UNPACK_BITS O [—

“‘n”=0...15

CALL UNPACK_BITS(I NPUT =input%, &
OUTPUTO=o0utputd@, . . . OUTPUTn=outputn@)

WRITE BITS
Function

This function stores data into a column in the
specified BOOLEAN data structure.

SN E
coL
In WRITE_BITS

— EN

Maximum “n” = 8

CALL WHITE_BITS(STRUCTURE__NAME=structure_name@‘ &
COLUMN =column®%,ENABLE = enable@. &
INPUT1 =inptt1@. . .. INPUTn=inputn@, &
ERROR = error@)

WRITE WORDS

Function

This function stores data into a column in the
specified INTEGER data structure.
———1 SN E
—1 COL
1 In WRITE__WORDS
——1 EN

Maximum ‘‘n” = 8

CALL WRITE_ WORD(STRUCTURE__NAME =struc__name%, &
COLUMN = column%,ENABLE = enable@, &
INPUT1 =input1%,. . . . INPUTn=inputn%, &

ERROR =error@}

3-39

Current Minor Loop

DC__DRIVE__ CML

Function

Performs the current minor loop regulation for
the S6R DC Motor drive.

INPUTS ouTPUTS
€ p—
=2 [—»] 0-cnTLSLOT
S ® | —» DIG.10.5LOT
B D
25
“é L | AC-LINE FREQ LINE. PERIOD
Y K
[~ REFERENCE SYNG L?SD;E
FOBK. GAIN
AEF.RATE REF RATE OUT
g REF LAG REF.LAG OUT
c
=3
O = KP DC TIME
8 INTEGRAL GAIN
(-3
8 | —» P wLEAD SELTA
£G.FACTOR BRIDGE POL
l.. | €& THRESH DC CML STATE
2 [~ cmL RUN
€ _ e P
g3 MAX M DROPOUT INSWITCH POSA
55— CMUL COAST STOP oo ooss
@
2]
_ | MCR SELECT INFAULT RESET
o i—
E cML TEST 68 BT
% TEST BRPOL
T
s TEST ALPHA EXT IET OV
— T
—» 10C THRESH SYNC .LOSS OU
T
LM BAR TACH LOSS OU
.
SPEED FDBK Osv ou
° DIGITAL TACH
3 TACH LOSS STOP PHROT ELT" QUT
w
£ osv FoBK £45 ISER MO
5 OSV THRESH
NONSTAND PHROT DIAG DATA
AUTO PHROT
| —={ FAuLT mEsET

3-40

sinduj yayms (90v2S)
FINPOW 131101U0D 3AUG

sindinQ 104u0) doo

I

sindinQ ansoubeiq

pue sjine4 aaug

CALL DC_ DRIVE__ CML(IO__CNTL __ SLOT=io_cnti_slot%,
DIG_| IO SLOT= dig_io_: slot%
AC_LINE_FREQ ac_llne_'req%,
“REFERENCE =reference%;"REF__RATE=ref_rate,
REF_LAG=ref_lag,"KP=kp.PI__W _LEAD=pi_w_ lead,
AG_ “FACTOR= ag__factor%,

'CC THRESH=cc_thresh%,

'CML RUN=cml run@

'CML COAST _ SToP= cmi_coast_ stop@.
'MCR SELECT=mer select@

MAX_ 1 ™ |_DROPOUT=max__m__dropout,
'CML TEST=cmi |_test@.

'TEST BRPOL =test brpoi@

‘TEST ALPHA =test alpha%

10C_ THRESH=ioc thresh%.

LIM_| " BAR=lim bar%.

DIGITAL TACH= digital tach@
"SPEED_| “FDBK= =speed_ fdbk%,
TACH_! Loss STOP=tach_loss_ stop@.
“osv_| “FDBK=0sv ldbk%.

osv_’ "THRESH= osv__thresh%,
'NONSTAND PHROT = nonstand _phrot@,
AUTO PHROT = auto phrot@
'FAULT RESET =fault _reset%,

oC_ CML STATE= dc cmi_state@,
SYNC LOCKED = sync_| " locked@,
LINE_| “PERIOD =line _period%,
INSWITCH _POSA= =inswitch _posa@.
mswn'cu POSB = inswitch pcsb@
INFAULT__| RESET =infautt reset@
“DC_ TIME= de_time%,
~BRIDGE__POL=bridge_ poi@.
“REF__RATE_OUT=ref_rate_ out’%,
"FIEF LAG_ ¢ “OUT =ref Iag Sut%,
“FDBK GAIN fdbk gam% =1 FDBK:i_fdbk%,
~INTEGRAL GA!N_mtegral gain%,
“*DELTA=delta%. IOC OUT=ioc cu(@
SYNC_LOSS_OUT= sync loss ou(@
TACH LOSS OUT =tach_loss out@
osv_(OUT=0sv _out@,

EXT_| TIET _OUT=ext_iet_out@,
PHROT FLT OUT= phrot fit oul@
BAD_! SCR OUT= bad_ scr, out@
BAD_ y_SCR_! _NUM= bad ser_numd%,
DIAG DATA= diag__ data%)

o 0o 0o Qo 00 Q0 00 Do 0o Do Lo Qo 00 o Qo GO O Do Lo Do (0 Do fo Do R0 Qo R0 Qo Qo N0 Po e S0P DM PP PR

* Dynamically adjustable
“* Latched on error
Note that the asterisks are not part of the CML statement.

3-41

Control Block Execution
Time Estimates

The execution time for a Control Block task can be
determined by adding the execution time for each
statement to the SCAN__ LOOP/END time. Dividing
by the scan time (TICKS x tick rate in seconds)
gives the estimated CPU usage for the task.

referenced by the task

7010 Processor 6010/6011 Processor
Block Name Maximum Time (186c) Maximum Time (nsec)
ABSOLUTE_ VALUE 9.18 L3
ALARM 11.16 + n(2.48) 44 + n(11)
AMPLIFIER 13.16 + K(3.12) 62 + k(13.8)
AND 10.80 + j(1.88) 41 + j(8.3)
BIT__SELECT 26.04 + n(1.20) 118 + n(6.5)
COMPARE 11.24 + n(1.16) 45 + n(5.5)
COUNTER 15.64 61
DIFFERENCE 10.80 4
DIFF_LAG 33.04 154
END 13.82 + 42.0) + (1.6} + | 60 + t3.2) + ¥2.8) +
B(2.2) + d(2.5) b(4.3) + d(4.9)
FUNCTION 2356 93
INTEGRATE 39.14 193
INVERTER 10.84 48
LAG 26.52 118
LATCH 15.04 68
LEAD_LAG 68.60 284
LIMIT 18.20 69
MOVE 10.40 + p(2.32) 39 + p(11)
MULTIPLY__DIVIDE 13.76 k4l
NOTCH 85.16 393
OR 10.24 + 1.88) 41 + j(8.3)
PACK BITS 24.28 + j(1.44) 110 + KS)
PD 124.00 515
PROP_INT 4032 193
PULSE_ MULT 18.32 86
RAMP 27.72 122
READ_BITS 24.32 + n(1.12) 106 + n{7.3)
READ_ WORDS 25.76 + n(1.28) 111 + n(5.6)
RUNNING__AVERAGE 28.64 125
SAMPLED_ AVERAGE 29.00 125
S_CURVE 47.00 282
SCALE 2248 98
SCAN_LOOP 80.00 + (1.6) + {2.5) + | 326 + t2.4) + i(4.9) +
b(3.8) + d(d.1) B(6.8) + &(7.2)
SEARCH 19.80 + m{0.68) 74 + m(3)
SELECT 11.36 + j2.52) 44 + (12.2)
SHIFT_BITS 18.28 + p(2.04) 92 + p(19.7)
SHIFT _WORDS 17.80 + p(1.72) 89 + p(13.3)
SUMMER 11.28 44
SWITCH 11.52 47
TRANSITION 1.36 48
UNFACK_BITS 23.40 + n(1.44) 106 + n(7.3)
WRITE_BITS 25.56 + j(1.36) 103 + j(6)
WRITE_WORDS 25.52 + j(0.36) 110 + j(1.9)
1{REM 9.88 40
b = number of boolean vari f by the task
d = number of common double integer variables referenced by the task
i = number of integer vari by the task
j = total number of inputs programmed
k = total number of input pairs programmed
m = number of elements searched
n = total number of cutputs programmed
p = total number of inputfoutput pairs programmed
t = total number of common integer, boolean, and double integer variables

3-42

AutoMax Off-Line PC Editor

Quick Reference

F1 — Help

F2 — Initiate search for variable name/contact

type
ALT-F2 — Next occurrence search variable

F3 — Commands

F4
ALT-F4

F5
ALT-F5

F6
ALT-F6
ALT-F7

F8

F9

F10

Home —
End —

PgUp
PgDn

Del —
Ins —

-~ Quit

- Resequence
- Substitute

- Preset modify

- Move sequence

<-4gzoZz—O>»TOIOM

Normally open contact
Up transition contact

Normally closed contact
Down transition contact

Horizontal line
Delete element

— Vertical branch

Delete branch
Coil —()
Functions

T - Timer (On-delay)
O - Off-delay timer

C - Counter

S - Shift register
R - Remarks

E - Event coil

Find sequence number/coil name

First sequence

Last sequence
Previous sequence
Next sequence

Delete sequence
insert sequence (after)

- Exit and update file

~ Add element description
- Change element description
- Program information

- Delete multiple sequences
- iInclude sequences from file
- Wildcard substitution

- Text edit descriptions

- Variable scope change

3-43

PC/Ladder Language Format

Normally Open Contact
bitname

——

Normally Closed Contact
bitname

,M,

Up Transition Contact
bitname

——

Down Transition Contact
bitname

—l—

Coil
bitname

—0

On Delay Timer

bitname
(ON)

IN ouT

TIMER

PN: preset name
PV: preset value

CN: current value
name

CV: current value

Off Delay Timer

bitname
IN OUT |——(OFF)

TIMER

PN: preset name
PV: preset value

CN: current value
name

CV: current value

Counter

upP ouT

COUNTER

PN: preset name
PV: preset value
DOWN

CN: current value
name

CV: current value
RESET

Shift Register

DATA ouT

SHIFT
LEN: register
length (<16
bits)
SHIFT

CN: current value
name

CV: current value
RESET

Event Coil

SET ouT

EVENT
EN: eveng_'_name

bitname

()

bitname

()

bitname

()

3-45

PC/Ladder Logic Execution
Time and Memory Usage
Estimates

The execution time for a ladder logic task can be es-
timated using the following timing estimates. After
the total execution time is computed, divide by the
scan time to obtain an estimate of the CPU usage
for the task. A maximum of 2047 different symbols
may be used in a single task. Ladder logic tasks are
limited to a maximum of 90K bytes for ladder se-
quences plus 45K for symbols.

7010 6010
Execution Execution Memory
Ladder Logic Time Time Usage
Operation inpsec Inpusec in bytes
Normally Open 5 15 6
Contact
Normally Closed 5 15 6
Contact
Transition Contacts
AND 1.0 3.0 10
OR 1.2 35 12
Coils 7.1 26.0 8
Timers 147 50.0 24
Counters 14.0 50.0 24
Shift Registers 119 41.0 24
Events
Event Set 152.0 272.0
Event Not Set 9.6 18.0 24
Remark 35 11.0 24
Variables 8+ # of
characters
in name
System Overhead - 100 314 3000
Fixed
System Overhead - 6¢c+3f 18¢c+9¢f c/n*10 +
Variable 10/sequence
Key:
¢ = number of common variabies
f = number of forced variables
n = packing density, a function of how the
common booleans are stored in mem-
ory. The value can range from 1 (worst
case) to 16 (ideal case). Use a value of
8 as an estimate.

3-46

Norton™ Editor
Command Summary

F1 — Help
F2 — Status

F3 — File commands

— Exit, save the data and end the edit
session

— Quit, discard the data and end the edit
session

— Save, write the data to disk and continue
-editing

— e@Xchange windows, switch to other

window

New, edit a new file

Append another file to end of edit data

Write part of the data to disk

Load more data from a large file

Close the output file, open new output

ors»z X o O m

— Block commands

Set a block marker

Remove block markers

Delete a block

Copy a block

Window-to-window block copy

Move a block

Line, mark an entire line as a block
End-of-line, mark to end-of-line as a block
Find block marker

TMrZE00DO [

Screen format commands

Line length, set line length

Word-wrap, toggle on and off

Format a paragraph

Tab, set tab spacing

indent, toggle auto indent on and off
Cursor, set cursor type

Display, set display color

Save editor with hew defaults set

Key define, change operation of Tab and
Ins keys

X0oo—-Hmsr- T

F6 — Miscellaneous commands

G — Goto a line number

M — Matching punctuation, finds matching
symbol

o] — Condensed display mode

Ins — Insert mode cancel, switch to replace
mode

T — Test windows for differences

3-47

F7 ~— Printer commands

P — Print entire edit buffer

B — Block, print marked block

E — Eject paper (form-feed)

S — Size in lines per page

M — Margin, set left margin for printing

F9 — DOS Command Processor

Other commands:

Ins — Insert, switch to insert mode

~U — Undelete

~F - Find or find-and-replace

~C — Continue find operation

~“P - Insert control character

~V — Vice versa, flip upper- and lowercase

Cursor Movement

Right Arrow right one character

Left Arrow left one character

Up Arrow up one line

Down Arrow down one line

~Right Arrow right one word

~Left Arrow left one word

Home beginning of line

End end of line

PgUp top of page or previous page
PgDn bottom of page or next page

~Home or ~PgUp beginning of the edit data
~End or “PgDn end of the edit data

Delete Commands

Key Deletes

Backspace one character to the left, when
in Insert mode

Del the character under cursor

~w the word to the left of the
cursor

Alt-W the word to the right of the
cursor

~L from the cursor to beginning of
line

Alt-L from cursor to end of line

Alt-K the entire current line

F4D the marked block

~Uor Alt-U undeletes any but a deleted

block (until the cursor is moved)

Search Commands

Alt F Find string forward

~F Find string reverse

Alt C Continue find string forward
~C Continue find string reverse
F4 F Find block marker forward

3-48

To make the search case-insensitive, terminate the
string with ESC rather than RETURN.

To search for a new line character, enter control
RETURN in the search string.

Search and Replace Commands

Forward search and replace:
ALT F
enter search string
ALTF
enter replacement string

Reverse search and repilace:
2F
enter search string
%
enter replacement string

Responses to search and replace:

Y — Replace

N — Doesn't replace

* — Replace all

SPACE — Quits search and replace
ALT C — Continue search forward
~C — Continue search reverse

3-49

Section IV
Appendices

4-0

Appendix A

ASCII
Conversion Chart
Hex |Dec| * |Char|Hex|Dec |Char]Hex | Dec | Char
00| 0| @ (NUL]2B 43| + |55 8} U
01 1| A |SOH] 2C | 44 s 56| 86| V
02 2| B [STX| 2D | 45 - 57 87| W
03 3| C |[ETX |} 2E | 46 i 58 881 X
04 4| D |EOT | 2F | 47 / 59 89] Y
05| 5] E |[ENQ}J 30| 48] O |JS5A| 90| Z
06 6 F ACKY 31 | 49 1 5B | 9N [
07| 7| G [BEL|32|50] 2 |5C| 92 \
08] 8| H |BS | 33|51 3 |sD]| 93| 1]
08| 9] I |HT]34 |52 4 |56 | 84| ~
0A | 10| 4 |LF 35 | 53 5 5F 9% | _
B|11| K|vr |3 |54] 6 J60] 96 °
oC |12 | L [FF 37 (55| 7 |61 97| a
0D 13! M |CR |38 |5 8 |]62] 98] b
OE|[14] NSO J3 57| 9 |63]| 99} ¢
OF | 15] O |SI 3A | 58 § 64 {100] d
1016 | P |DLE | 3B | 59 ; 65 | 101 e
11 {17 Q |DC1|3C |60 < J 66)|102) f
12 {18 | R {DC2] 3D | 61) 67 {103} g
13| 19| S |DC3|{3E |62 | > | 68 |104| h
14 | 20| T |DC4| 3F | 63| ?] 69 |105] i
15 | 21 U INAK] 40 | 64 | @ | 6A [106 j
16 [22| V [SYN] 41 | 65 A 6B |107] k
17 | 23 | W |ETBf 42 (66| B f6C |108] |
18| 24 | X |CAN] 43 | 67 [+ 6D [109| m
19125] Y [EM 44 | 68 D 6E 110 n
1A] 26| Z |SuB] 45| 69 E 6F } 111]
1B | 27 [|[ESC} 46 | 70 F 70 {112] p
1C | 28 \ |FS 47 | 71 G 71 | 113} q
iD | 29] |GS 48 t 72 H 72 {114 r
1E] 30| ~ |RS |49} 73 | 73 {115} s
1F | 3 - Jus 4A | 74 J 74 | 116 t
20 | 32 SP 4B | 75 K 75 |117] u
21| 33 ! AC | 76 L 76 |118] v
22 | 34 ” 4D | 77 M 77 |119] w
23 | 35 # 4E |78 | N | 78 {120 x
24 | 36 $ 4F|79| O 79121} y
25 | 37 % 50 8| P J7A 122} =z
26 | 38 & 5118 | a]78B]|123} |
27 | 39 ’ 52 |8 | R J7C |124] |
28 | 40 (53| 83| s |70 [125] }
29 | M1) 54 | 84| T | 7€ |126] ~
2A | 42 . 7F 1127 |DEL

*

Press (CTRL) at the same time as the indicated

character

Appendix B
Decoding Bus Errors

Some bus errors that occur in the rack can be easily
traced using the procedure described below. These
errors result in a hexadecimal entry in the “Error
Specific” field in the programming executive soft-
ware error log.

The procedure consists of converting the hexadeci-
mal number given in the error log into a binary num-
ber, and then interpreting the most significant and
least significant 16 bits as described below.

1. Convert the hexadecimal number found in the
“Error Specific”’ field into a binary number. If the
hexadecimal number consits of fewer than eight dig-
its, pad the number with zeroes. For example, hex-
adecimal 3250184 would be padded with a zero first
to become 03250184. The conversion to binary
would look like this:

0 3 2 5 0 1 8 4
0000 0011 0010 0101 0000 0001 1000 0100
2. Interpret the resulting binary pattern in two
stages. First, examine the most significant 16 bits
using the pattern below. This step uses the sample
value in step 1 above.

BT
[er]o0]2 [28 27 | 26 fas [as [z T2 [21 [o s [e 17 [%6

IOI fbvays 'ByteBit#I Abways Fixed Isuot#inwsraokl
00 0 00 0 171 00 1 00 1 0 1

2 5

The first line under the figure above describes the
meaning of the pattern. The second line shows the
equivalent hexadecimal value. The third line shows
the decimal value corresponding to the hexadecimal
value in the second line. It is the decimal values that
are used to decode the bus error slot location.

Step 2 tells you that the bus error occurred in siot 5
in the rack. Note that the “Byte Bit #" vaue will be
used in step 4 to help pinpoint the bit at which the
error occurred.

3. Interpret the least significant bits of the hex value
according to the type of module found in the slot.

4-2

For this example, we will assume that the module in
slot 5 is a Network Communications module. In this
case, we will use the following bit pattern to decode
the drop, register, and bit number where the error
occurred.

Network Communications Module
Least Significant 16 Bits

BT
Pis]salssfrefnfrofofe] s e]s]«]a]2]]0o]
| e | orop [oo]®]
00000 0O 1100 06 0 1 0 0

3 2 0

The first line under the figure above describes the
meaning of the pattern. The second line shows the
equivalent hexadecimal value. The third line shows
the decimal value corresponding to the hexadecimal
value in the second line. It is the decimal values that
are used to decode the bus error register location. in
the case of Network or Remotel/O modules, this
step also tells you the drop location where the error
occeurred.

Step 3 tells you that the error occurred in register 2
on drop 3. Note that the “b” value is used in the
next step to detemine the bit.

4. In order to determine the bit number at which the
error occurred, use the following formula:

bit number = Byte Bit # + (8 x b)

To continue with our sample value, the equation
would look like this:

bit number = 3 + (8 x 0)
bit number = 3 + 0
bit number = 3

Note that if “Byte Bit #" and 8 x b both equal 0,
the address may have been accessed as either an
integer (16 bits) or bit 0 of byte 0.

5. Use the figures below to determine the register
and bit number when bus errors occur on the mod-
ules specified. The slot number and *Bit Byte #"
are always decoded using the figure in step 2 above.
The formula used to find the bit is the same as in
step 4 above.

Local /O Module
Loatk Signincont 16 Bhs

8rr
Lislsads]ref o] e a7 e s T« a2 10]
I REGISTER Ibl
A Modbus Intertace Module MN S7CA414
Lesst Significant 16 B
BT

Lslrefss]refsifro] o sz Te s TsTa]2]1]0]
| “ |-

where R is a local register address, which may be used with the I/O monitor. Deter-
mine the Modbus register number from the following table:

A (Decimal) | Modbus Register (Decimal)
64 - 319 (R — 64)'16] + BYTE BIT# + 8°b + 1
320 - 575 (R —~ 3201'16] + BYTE BIT# + 8% + 10001
576 -~ 1599 - 576) + 1
1600 - 2623 (R — 1600) + 40001

A Remots 1/0 Module M‘N 57C416
Least Significant 16 Bits
8IT

Lshafoefre]nfwoloTe 7 e [s[«fs]2]]0]

REGISTER I b I

REMOTE
l" 0 °l DROP RACK SLOT

An AutoMate Interface Module M/N 57C417

Least Significant 16 Bits
8IT

|15|14|13|12]11|1o|9|s|7|s|5|4[3|2|1[ol
| " |-

where R is a local register address, which ma'y |be used with the 1/0 monitor. Deter-
ol

mine the AutoMate register number from the following table:
R (Decimal) | AutoMate Register (Octal)
64 - 319 0000.00 - 0377.17
320 - 575 0400.00 - 0777.17
576 - 1599 2000 - 3777
1600 - 2623 4000 - 5777

An Allen-Bradiey Interface Module M/N 57C418
Least Significant 16 Bits

BIT

|15|14|1a|12|11|10|9|s|7|e|5|4[3|z[1lol
| " |-

where R is a local register address, which may be used with the I/O monitor. Deter-
mine the A-B register number from the following table:

A-B8 A-B Register
R (Decimal) Fite (Decimal)
684 - 319 80 R - 64
320 - 875 B1 R - 320
576 - 1599 NO R - 576
1 - 2623 N1 R-1

4-4

Decoding Error Code 37

When a 37 error code occurs on the Processor mod-
ule, examine the Error Log for the module using the
Programming Executive software. Decode the hex-
adecimal code found in the Error Log as follows.

Llefsfefafe]rfo]

WATCHDOG TIMEOUT NMI

POWER FAIL NM! (NON-MASKABLE
INTERRUPT)

CURRENT LOOP TIMEOUT; COMM LOST
SPURIOUS NMi RECEIVED
SPURIOUS INT2 FROM 68K RECEIVED
SPURIOUS INTERRUPT VECTOR §
RECEIVED

SPURIOUS INTERRUPT VECTOR 6
RECEIVED

SPURIOUS INTERRUPT VECTOR 7
RECEIVED

Corrective action: Reset the Drive Controller moduie.
If this does not correct the problem, systematically
replace the Drive Controller module and then the
Processor module.

4-5

Appendix C
Summary of

Common DOS Commands

CD
CD\
CD..

CHKDSK

CHKDSK/V
CHKDSK/F

COPY

DEL
DISKCOPY

DIR
DIR/W

DIR/P
FORMAT

MD
PATH

PATH;
PROMPT

RD

TYPE

Change to specified directory

Change to root directory

Change to parent directory of current
directory

Checks and displays the condition of
a specified disk or file. If no disk drive
is specified the command operates on
the default drive.

Executes the CHKDSK command and
displays all files

Executes the CHKDSK command and
fixes any problems found during the
check

Copies a file(s) from one disk or direc-
tory to another specified disk or direc-
tory

e.g. copy (src drv):\(dir)\file.ext (dest
drv):\(dir)\file.ext

Deletes specified file(s)

Copies contents of one disk to
another

Lists all files in the default directory
Selects wide dispiay for DIR commanc
Selects page mode for DIR command
Formats the disk in the specified drive
(NOTE: This command erases ali files
on the disk)

Makes (creates) a new directory

Sets or displays a command search
path

e.g. PATH=C:\DCS

Sets a null path (i.e. deletes existing
path)

Changes the normal MS-DOS prompt
e.g. PROMPT =pg

With this command the prompt will
now show the default directory
Removes (deletes) specified directory
(NOTE: All files within specified direc-
tory must first be deleted or copied
before operation)

Displays specified file

(NOTE: To display a file one screen at
a time use the |MORE command)

e.g. TYPE filename.ext IMORE

Appendix D

Windows Command Summary

Access via: Keyboard Mouse
Control menu ALT,SPACEBAR Click on menu
Menus ALT,RIGHT(orLEFT), Click on menu
ENTER
ALT,underlined letter
Commands DOWN(orUP),ENTER Click on command
Type underiined letter
Making a 1. DOWN (or UP) to Click on item
Selection locate item
2. SPACEBAR to select
Making 1. CTRL+DOWN(orUP) CTRL+ click on
Multiple to locate item each item to be
Selections 2. CTRL+ SPACEBAR to selected.
select
3. Repeat for each item
to be selected
Movingina 1. TABto area Click on desired
Dialog Box 2. Use DIRECTION keys area,
ALT+ underlined letter Click on desired
item
SPACEBAR toggle " Click to toggle
choices
Text Box 1. Use DIRECTION keys Drag to select text
to locate text
2. SHIFT +DIRECTION
to select text
List Box 1. Use DIRECTION keys, Use scroll bar, then
HOME, END, PAGE click on item
UP, PAGE DOWN
2. SPACEBAR to select
Moving a 1. ALT+ESC Window - Drag title
Window or 2. ALT+SPACEBAR bar
lcon 3. Press M Icon - Drag icon
4. Use DIRECTION keys
5. ENTER
Changing Size1. ALT+ESC Drag border or
of a Window 2. ALT+SPACEBAR corner
3. Press S
4. Use DIRECTION keys
to select and move
border
5. ENTER
Enlarginga 1. ALT+ESC Click on Maximize
Window 2. ALT+SPACEBAR box {upper-right
3. Press X corner)
Shrinkinga 1. ALT+ESC Click on Minimize
Window 2. ALT+SPACEBAR box (upper-right
3. Press N corner)
Restoringa 1. ALT+ESC Click on Restore
Window 2. ALT+SPACEBAR box (upper-right
3. Press R corner)

4-7

Restoring an ALT4+TAB
lcon

Scrolling:
rows, columns Use DIRECTION keys

Top of list HOME
End of list END
up 1 screen PAGE UP

down 1 screenPAGE DOWN

Cancel a ESC
Command
End session 1. ALT+first letter of

left-most menu
2. X to select Exit
Windows command
3. OK at dialog box

438

Double-click on icon

Drag scroll box
Drag scrol! box to
top of scroli bar
Drag scroll box to
bottom of scroll bar
Click above scroli
box

Ciick below scroli
box

Click on empty
space

Doubie click on
Control menu, then
click on OK at
dialog box

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www.reliance.com/automax

wwwerockwollautomation.com
Corparsts Hesduarters. .
Sulta 1400, Miweuksa, WL
il Autcmation, 1201 South Second Sree, Mwektse, W1 53204-2458 USA, Tl ARSI e 14208

‘Americas: Rockwsl
Europe/Middl East/Africe: Rockwell Automation st\lmmwnvawbnmumnnn ||7an-than1 lmzmnmr-zmz-m
2Z3/F Ctcorp Contre, 18 Whithal Roed, Tal: 662) 2267

Headquariees for Dodge and|
‘Americas. Rockwell Autometior umm-nmmammlummunumm 11064297 0 P 1) 842512450
EuropeyMilo Eas/Afrca: Foiwel Automation, D-74834 Ebtab Db, Germany, To: u&m wmh:u&) et 7t

Publication J-3669-1 - December 1998
Copyright © 2002 Rockwell Automation, Inc.
All rights reserved. Printed in U.S.A.

