AutoMax®
Ladder Logic
Language

Industrial

CONTROLS

Instruction Manual J-3677-4

RELIANCE'.
ELECTRICH[]

The information in this user’'s manual is subject to change without notice.

DANGER

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OF THIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE, OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALS IN THEIR ENTIRETY BEFORE PROCEEDING. FAILURE
TO OBSERVE THIS PRECAUTION COULD RESULT IN SEVERE BODILY INJURY
OR LOSS OF LIFE.

WARNING
PROGRAMS INSERTED INTO THE PRODUCT SHOULD BE REVIEWED BY
QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE CONSTRUCTION AND
OPERATION OF THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

WARNING
THE USER MUST PROVIDE AN EXTERNAL, HARDWIRED EMERGENCY STOP
CIRCUIT OUTSIDE THE CONTROLLER CIRCUITRY. THIS CIRCUIT MUST
DISABLE THE SYSTEM IN CASE OF IMPROPER OPERATION UNCONTROLLED
MACHINE OPERATION MAY RESULT IF THIS PROCEDURE IS NOT FOLLOWED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

Norton® is a registered trademark of Peter Norton Computing, Inc.

MODBUS® is a registered trademark of Gould, Inc.

IBM™ is a trademark of International Business Machines.

Reliance®, AutoMax®, and AutoMate® are registered trademarks of Reliance
Electric Company or its subsidiaries.

Shark™ ,R-Net™, and ReSource™ are trademarks of Reliance Electric Company
or its subsidiaries.

Table of Contents

1.0 INTRODUCTION ...t iia i iiee i iiaeas
1.1 Compatibility with Earlier Versions
1.3 Related Hardware and Software

2.0 PROGRAMMING FOR AutoMax SYSTEMS
2.1 Configuration: wms::::ssmummer:ismummes e @EmEmans« 55 @ug
2.2 ApplicationTasks ...
2.3 VariablesandConstants ...
231 Variables
2.3.2 Subscripted Variables (Arrays)ccoiie...
2.3.3 Variable Control Typescovviiiiiinnn...
2.3.4 Pre-defined Common Memory Variables

3.0 LADDER LOGIC LANGUAGE DESCRIPTIONcu..
3.1 Application Program Structures
3.2 Variable Namesin Ladder Logic
3.3 Variable Typesin LadderLogiccciiiiiennn..

4.0 LADDER LOGIC LANGUAGE OPERATIONS
4.1 CoNtactS . ..o e
4.1.1 NormallyOpenContactcooviunniinnn...
4.1.2 Normally Closed Contact
4.1.3 Upward Transition Contact
4.1.4 Downward Transition Contact
4.2 Output (Coil) Operationsoiiiiiiiiiiiiinnn.
421 GOl .t
. E2 2 B] =1 S s
423 COUNTOr s . sccceiumunss s s mumpes o526 @R 5§ 5 58 wmE
424 ShiftRegister ... i
425 EventCoil - ::c:ovwmuississsmmumessscsmumeesssssswms
4.3 REMARKSEQUENCE oot iiee e

5.0 TASKEXECUTION ...t iiai it naes
5.1 Buffering ...

6.0 STOPPING A TASK CONTAINING COILS WITH
INTERNAL MEMORYo iie i iaes

6.1 Task Stopped with STOP Command

6.2 Task Stopped Through Power Loss or with
STOP ALLCommandouuriiiiie e iieen

7.0 EXECUTION TIME AND MEMORY USAGE ESTIMATES

Appendices

Appendix A

Converting a DCS 5000 Ladder Logic Task to the Current Version

of the AutoMax Executive Software

List of Figures

Figure 3.1 - Ladder Sequence Structuree. 3-2
Figure 3.2 - Sample Printout of Task Listing 3-3
Figure 3.3 - Arrays Used As Contactand Coil 3-4
Figure 4.1 - NormallyOpenContactccoiiiiiiininnnn 4-1
Figure 4.2 - Normally Closed Contactc.oiiinnnn... 4-2
Figure 4.3 - Upward TransitionContact 4-2
Figure 4.4 - Downward Transition Contact 4-2
Figure 45 - CoilOperationcciiiiiiiiii e 4-3
Figure 4.6 - TimerOutputBlocks, 4-4
Figure 4.7 - Operation of On-Delay Timerccco... 4-4
Figure 4.8 - Operation of Off-Delay Timer 45
Figure 4.9 - Counter........ccoiiiii e 4-6
Figure 4.10 - ShiftRegister ...t 4-7
Figure 4.11 = EVENE GOl woucus oo v v oo v s ciimins v v e s wvismini o e e e s s 47
Figure 412 - REMARK Sequenceooiiiiiiinnininnnnnnnn. 4-8

List of Tables

Execution Time and Memory Usage Estimates 7-1

1.0

1.1

INTRODUCTION

The products described in this manual are manufactured or
distributed by Reliance Electric Industrial Company.

The AutoMax Programming Executive software includes the

software used to create Ladder Logic programs. Instruction manual
J-3684 describes the AutoMax Programming Executive software

Version 2.0. Instruction manual J-3750 describes the AutoMax
Programming Executive software Version 3.0. Instruction manual
J2-3045 describes the AutoMax Programming Executive software
Version 3.3. Instruction manual J2-3066 describes the AutoMax
Programming Executive software Version 3.4. This instruction I
manual describes AutoMax Ladder Logic language for version 2.0

and later AutoMax Programming Executive software.

Features that are either new or different from those in version 1.0
AutoMax Programming Executive software (M/N 57C304 through
57C307) are so noted.

This instruction manual is organized as follows:

1.0 Introduction

2.0 General information about programming for AutoMax systems
3.0 General information about programming in Ladder Logic/PC
4.0 Ladder Logic operations

5.0 Task execution

6.0 Stopping tasks with internal memory coils

7.0 Execution time and memory usage

Appendix A Converting tasks created with previous versions of
the Executive software to the current version

Appendix B AutoMax Processor Compatibility with versions of the
AutoMax Programming Executive

Compatibility with Earlier Versions

Version 2.0 of the AutoMax Programming Executive requires
AutoMax Processor M/N 57C430A or 57C431; Version 3.0 and later
require AutoMax Processor M/N 57C430A, 57C431, or 57C435. M/N
57C430 cannot co-exist in the same rack with M/N 57C430A,
57C431, or 57C435.

Refer to Appendix B for a listing of the AutoMax Processor modules
that are compatible with Version 2 and later of the AutoMax
Programming Executive software.

The thick black bar shown at the right-hand margin of this page will
be used throughout this instruction manual to signify new or revised
text or figures.

1-1

1-2

1.2

1.3

Additional Information

You should be familiar with the instruction manuals which describe
your system configuration. This may include, but is not limited to,
the following:

e J-3618 NORTON EDITOR REFERENCE MANUAL

e J-3649 AutoMax CONFIGURATION TASK INSTRUCTION
MANUAL

e J-3650 AutoMax PROCESSOR INSTRUCTION MANUAL
e J-3675 AutoMax ENHANCED BASIC INSTRUCTION MANUAL

e J-3676 AutoMax CONTROL BLOCK LANGUAGE
INSTRUCTION MANUAL

e J2-3018 AutoMax REMOTE I/O SHARK INTERFACE
INSTRUCTION MANUAL

e Your ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL

¢ Your personal computer and DOS instruction manuals

e |EEE 518 GUIDE FOR THE INSTALLATION OF ELECTRICAL
EQUIPMENT TO MINIMIZE ELECTRICAL NOISE INPUTS TO
CONTROLLERS

Related Hardware and Software

M/N 57C390 contains the AutoMax Programming Executive software
Version 2.0 on 51/4” floppy disks and a set of hardware and software
reference manuals. M/N 57C391 contains the AutoMax
Programming Executive software Version 2.0 on 31/," floppy disks
and a set of hardware and software reference manuals. M/N 57C395
contains the AutoMax Programming Executive software Version 3.X
on both 51/,” and 31/5” floppy disks and a set of hardware and
software reference manuals. The two model numbers are sold
separately and are identical except for the size of the floppy disks.
The Programming Executive software includes the tools required for
programming in Enhanced BASIC, Control Block, and Ladder
Logic/PC languages.

M/N 57C392 and 57C393 are the AutoMax Programming Executive
Version 2.0 software updates. The two model numbers are sold
separately and are identical except for the disk size. M/N 57C397 is
the AutoMax Programming Executive Software Version 3.X update.
These updates effectively upgrade your existing software to the
most current version.

The AutoMax Programming Executive software is used with the
following hardware, which is sold separately.

1. M/N 57C430A, 57C401, or 57C435 AutoMax Processor.

2. IBM-compatible 80386-based personal computer running DOS
Version 3.1 or later.

3. M/N 61C127 RS-232C ReSource Interface Cable. This cable is
used to connect the personal computer to the Processor
module.

4. M/N 57C404A (and later) Network Communications module.
This module is used to connect racks together as a network and
supports communication with all racks on the network that
contain 57C404A modules through a single Processor module.
M/N 57C404 can be used to connect racks on a network;
however, you cannot communicate over the network to the
racks that contain M/N 57C404 Network modules. You must
instead connect directly to the Processors in those racks.

5. M/N 57C413 or 57C423 Common Memory module. This module
is used when there is more than one Processor module in the
rack.

6. M/N 57C492 Battery Back-Up. This unit is used when there is a
M/N 57C413 Common Memory module in the rack.

7. M/N 57C384 Battery Back-Up Cable. This cable is used with the
Battery Back-Up unit.

8. M/N 57C554 AutoMax Remote I/O Shark Interface Module. This
module is used to connect a Shark remote rack to the AutoMax
Remote 1/O network.

9. M/N 57552 Universal Drive Controller module. This module is
used for drive control applications.

2.0 PROGRAMMING FOR

2.1

AutoMax SYSTEMS

In AutoMax systems, application programs, also referred to as tasks,
can be written in Ladder Logic/PC language, Control Block
language, and Enhanced BASIC language. Refer to J-3675 and
J-3676 for more information about BASIC and Control Block
programming.

In addition to multi-processing, AutoMax systems incorporate
multi-tasking. This means that each AutoMax Processor (up to four)
in a rack allows real-time concurrent operation of multiple
application tasks.

Multi-tasking features allow the programmer’s overall control
scheme to be separated into individual tasks, each written in the
programming language best suited to the task. This simplifies
writing, check-out, and maintenance of programs; reduces overall
execution time; and provides faster execution for critical tasks.

Programming in AutoMax systems consists of configuration, or
defining the hardware, system-wide variables, and application tasks
in that system, as well as application programming.

Configuration

Version 3.0 and Later Systems

If you are using AutoMax Version 3.0 or later, you configure the
system within the AutoMax Programming Executive. See the
AutoMax Programming Executive instruction manual for information
about configuration if you are using Version 3.0 or later. The
information on configuration that follows is applicable only if you are
using AutoMax Version 2.1 or earlier. If you are using AutoMax 3.0 or
later, you can skip over the remainder of this section and continue
with 2.2.

Version 2.1 and Earlier Systems

AutoMax Version 2.1 and earlier requires a configuration task in
order to define the following:

1. All tasks that will reside on the Processors in a rack.
2. All variables that equate to physical /O in the system.

3. All other variables that must be accessible to all
Processors in the rack.

One configuration task is required for each rack that contains at
least one Processor. The configuration task must be loaded onto the
Processor(s) in the rack before any application task can be
executed because it contains information about the physical
organization of the entire system.

The configuration task does not actually execute or run; it serves as
a central storage location for system-wide information. Note that
local variables, those variables that do not need to be accessible to
more than one task, do not need to be defined in the configuration
task. Refer to J-3649 for more information about configuration tasks.

2-1

2-2

2.2

Application Tasks

AutoMax Processors allow real-time concurrent operation of multiple
programs, or application tasks, on the same Processor module. The
tasks are executed on a priority basis and share all system data.
Application tasks on different Processor modules in the rack are run
asynchronously.

Each task operates on its own variables. The same variable names
may be used in different tasks, but each variable is only recognized
within the confines of its task unless it is specifically designated a
COMMON variable. Changing local variable ABC% (designated
LOCAL) in one task has no effect on variable ABC% in any other
task.

Multi-tasking in a control application can be compared to driving a
car. The programmer can think of the different functions required as
separate tasks, each with its own priority.

In driving a car, the operator must monitor the speedometer,
constantly adjust the pressure of his foot on the gas pedal, check
the rearview mirror for other traffic, stay within the boundaries of his
lane, etc., all while maintaining a true course to his destination. All of
these functions have an importance or priority attached to them,
with keeping the car on the road being the highest priority. Some
tasks, like monitoring the gasoline gauge, require attention at
infrequent intervals. Other tasks require constant monitoring and
immediate action, such as avoiding obstacles on the road.

In a control application the Processor needs to be able to perform
calculations necessary for executing a control scan loop, monitor an
operator’s console, log error messages to the console screen, etc.
Of these tasks, executing the main control loop is obviously the
most important, while logging error messages is the least important.
Multi-tasking allows the control application to be broken down into
such tasks, with their execution being dependent upon specified
“events,” such as an interrupt, operator input, or the expiration of a
time interval.

The following table is a representation of typical tasks found in a
control application and the kind of event that might trigger each.

Task Triggering Event
Execute main control loop Expiration of a

hardware timer that
indicates the interval
at which to begin a
new scan

Respond to external I/O input Generation of a
hardware interrupt by
an input module

Read operator data Input to an operator
panel
Log information Expiration of a

software timer

Each of these tasks would be assigned a priority level (either in the
specific configuration task for the rack, or in later versions of the
Programming Executive software, through the configuration option).
The priority determines which task should run at any particular
instant. The more important the task, the higher the task priority.

2.3

2.3.1

Variables and Constants

All operations performed in AutoMax tasks use constants or
variables. Constants, also known as literals, are quantities with fixed
value represented in numeric format. Variables are names that
represent stored values or physical I/O. These values may change
during program execution. BASIC language tasks always use the
current value of a common (i.e., system-wide) variable in performing
calculations.

Control Block and PC/Ladder Logic tasks capture (latch) the values
of all common simple double integer, integer, and boolean variables
at the beginning of the task scan. Strings, reals, and array variables
of any type are not latched. This means that control Block and
PC/Ladder Logic tasks do not see the most current state of common
simple double integer, integer, and boolean variables; instead, they
see the state of these variables at the beginning of the scan. Any
changes made to these variable values by Control Block or
PC/Ladder Logic tasks are written to the variable locations at the
end of the scan of this particular task. See section 2.3.3 for more
information about common variables.

Variables

The following section describes the variable types in AutoMax tasks.
When constants are used in tasks, they must fall into the ranges
specified. For example, an integer constant must be in the range
specified for integers, +32767 to —32768. Note carefully that all
variable types cannot be used in all programming languages.

1. Long Integer or Double Integer Variables

Used to store 32 bits. The value can be in the range
+2147483647 to —2147483648 with no fractional part. The
terminating character is !. If you assign a real number (see #3
below) to an integer variable, the fractional part will be
truncated.

2. Integer or Single Integer Variables

Used to store 16 bits. The value can be in the range +32767 to
—32768 with no fractional part. The terminating character is %. If
you assign a real number (see #3 below) to the variable, the
fractional part will be truncated. Note that all internal integer
calculations are in double precision, or 32 bits.

3. Real Variables

Used to store a decimal value. The value can be in the following
ranges:

9.2233717 x 10**18 > positive value >
5.4210107 x 10 ** (—20)
—9.2233717 x 10**18 > negative value >
—2.7105054 x 10 ** (—20)

There is no terminating character for real variables. Use
scientific notation to enter large numbers. Use double asterisks
to indicate exponentiation.

2-3

2.3.2

24

Only eight digits of significance are accepted. The format for
entering real constants is as follows:

{sign}{digits}{.} {digits} {E}{sign}{digits}

For example: —1234.5678E+11

Real variables cannot be used in Ladder Logic tasks.
4. Boolean Variables

Used to store the status of 1 bit. The value can be either TRUE
or FALSE or ON or OFF. The terminating character is @. Note
that in BASIC tasks, the inverted sense (negative of the current
state) of a boolean variable is indicated with NOT. In Control
Block language only, the inverted sense of a boolean variable
can be indicated by entering a minus sign in front of the name
when referencing it in the application task. For example,
STATUS@ indicates the normal sense of variable STATUS@,
while —STATUS®@ would indicate the inverted sense of variable
STATUS@.

5. String Variables

String variables are used to store any alphanumeric sequence of
printable characters, including spaces, tabs, and special
characters. The terminating character is $. String variables
cannot be used in Ladder Logic tasks.

Subscripted Variables (Arrays)

Array variables are used to store a collection of data all of the same
data type. Arrays are permitted for all data types. Arrays are limited
to four dimensions, or subscripts. The number of elements in each
dimension is limited to 99999. This size is further limited by available
memory. The term array is used to denote the entire collection of
data. Each item in the array is known as an element.

Array variables are specified by adding a subscript(s) after the
variable name which includes the appropriate terminating character
to denote the type of data stored in the array. The terminating
character is followed by a left parenthesis, the subscript(s), and a
right parenthesis. Multiple subscripts are separated by commas.
Note that subscripts can be integer constants as well as arithmetic
expressions that result in integer values.

array variable name

A%(5)
/ subscript

terminating character
(denotes variable

type)

An array with one dimension, i.e., one subscript, is said to be
one-dimensional. An array with two subscripts is said to be
two-dimensional, etc. The first element in each dimension of the
array is always element 0. Therefore, the total number of elements in
each dimension of the array is always one more than the largest
subscript. For example, array A%(10) is a one-dimensional array
containing eleven integer values.

Example 1 - One-dimensional array

o|1(2| 3| 4|56
185 2| 53| 79| 99]122

A%

value of A

Example 2 - Two-dimensional array

B% (6, 3)

0l 1] 2| 3] 4| 5| 6
0 |185| 2 | B3| 79| 99|122| 40
1]70[36|46|31|34| 85| 6

B%

77| 73| 21]|365|476 51| 47
3 | 18| 23| 53|342| 39(224] 107

In the case of string arrays, version 1.0 Executive software always
allocated the maximum amount of memory for each element in the
array, regardless of whether the string stored in that element was of
the maximum length, 31 characters. Version 2.0 (and later)
Executive software allows the programmer to specify the maximum
size of elements in the array, from 1 to 255 characters.

To specify the maximum size of string variables in an array, add a
colon and a number (1-255) immediately after the $ character when
declaring the variable in an application task or defining it during
configuration. For example, defining A$:10(20) as a local variable in
an application task allocates space for 21 string values of 10
characters each. Note that if no length is specified in the initial array
reference, the default maximum is 31.

To define an array that will be common, i.e., accessible to all tasks in
the rack, you need to first define the variable. If you are using
AutoMax Version 2.1 or earlier, this is done with a MEMDEF or
NVMEMDEF statement in the configuration task for the rack. If you
are using AutoMax Version 3.0 or later, common variables are
defined within the Programming Executive. For example,
ARRAY1@(10) will allocate space for 11 boolean variables. Then, in
an application task for the rack, you declare the array a COMMON
variable as follows:

COMMON ARRAY1@(10).

Each element of the array that will be used in the task can be
defined with LET statements as follows:

LET ARRAY1@(0) = TRUE

(boolean values can only be TRUE/FALSE or ON/OFF). Other
application tasks in the rack can access the value in variable
ARRAY1@(0) simply by declaring it a COMMON variable.

2-5

2.3.3

2-6

Variable Control Types

The control type of a variable refers to the way the variable is
declared or defined in the rack configuration and application tasks.
There are two control variable types in AutoMax systems, local and
common.

1.

Local

Local variables are variables that are not defined in the
configuration for the rack and are therefore accessible only to
the application task in which they are defined. BASIC and
Control Block tasks must define the variables with a BASIC
LOCAL statement. For Ladder Logic/PC tasks, the editor
prompts for whether the variable is local or common when the
task is being created.

In BASIC and Control Block tasks, local variables can be
defined as tunable. Tunables are variables whose value can be
tuned, i.e., changed within limits, by the operator through the
On-Line menu of the Executive software. The value of tunable
variables can also be changed by application tasks by using the
BASIC language WRITE_TUNE function. BASIC and Control
Block tasks must define tunable variables with a variation of the
BASIC LOCAL statement that includes the tuning parameters.
Ladder Logic/PC tasks cannot use tunable variables.

The value of local variables at the time of initial task installation
is always 0. The effect of a Stop All or a power failure on variable
values in the rack depends on the variable type. Local tunable
variable values in both AutoMax and UDC application tasks are
always retained. Local variable values are retained for AutoMax
tasks, but not for UDC tasks.

AutoMax Processors will retain the last values of all local
variables. UDC modules will retain the variable values for the
following: parameter configuration data, UDC test switch
information, and D/A setup configuration. The variable values of
the following input data will also be retained: feedback registers,
UDC-PMI communication status registers, and UDC task error
log information. UDC modules will NOT retain local variable
values and data found in the following registers, which are
considered outputs: command registers, application registers,
the ISCR (interrupt status and control register), scans per
interrupt register, and scans per interrupt counter register. See
the AutoMax Programming Executive instruction manual for
more information on the STOP ALL and system re-initialization
conditions.

Common

Common variables are variables that are defined in the
configuration for the rack and are therefore accessible to all
application tasks in the rack. There are two types of common
variables, those that refer to memory locations, and those that
refer to actual physical I/O locations. The two types are defined
differently in the configuration task for the rack.

234

Common memory variables can be of any data type. They may
be read to or written from. Common /O variables are long
integer, integer, or boolean variables that represent actual
physical /O locations. Common |/O variables that represent
inputs may be read but not written to. I/O variables that
represent outputs may be read or written to.

All tasks that need to access common variables can do so by
using the BASIC statement COMMON. For Ladder Logic/PC
tasks, the editor prompts for whether the variable is local or
common when the task is being created. At least one BASIC or
Control Block task in the rack should also initialize common
memory variables, i.e., assign values to them, if they need to be
at a known state other than 0.

The value of common variables at the time of initial task
installation depends upon whether the variable references
memory or physical I/O locations. Common memory variables
are always 0 at task installation. Common I/O variables that
represent outputs are always 0. Common I/O variables that
represent inputs are always at their actual state.

After a STOP ALL condition or a power failure followed by a
system-restart, common memory variables that are defined as
volatile memory in the configuration for the rack are 0. Common
memory variables that are defined as non-volatile memory in the
configuration retain their last value. Common variables that
represent I/O locations are at 0 for outputs and at their actual
state for inputs. Note that the UDC dual port memory is treated
like I/O variables. See the AutoMax Programming Executive
instruction manual for more information on the STOP ALL and
system-restart conditions.

Pre-defined Common Memory Variables

The following common memory variables are pre-defined for every
rack. However, they do not appear on the form for common memory
variables. You must enter these variable names on the form if you
want to use these variables in application tasks.

AUTORUNSTATUS®@ - True when AUTO RUN is enabled for the
rack; false if AUTO RUN is not enabled

FORCINGSTATUS@ - True when a variable is forced in the rack;
false when no variables are forced in the
rack

BATTERYSTATUSO@ - True when the on-board battery of the
Processor module or Common Memory
module in slot 0 is OK

BATTE RYST ATU 81 @ _ R A T T N T T 1}
BATTE RYST ATU S) @ _ R R T T N T T]
BATTE RYST ATU S3 @ _ [T A A T A A
BATTE RYST ATU S 4 @ _ [R) T T T T T)

S WN =

2-7

3.0

3.1

LADDER LOGIC LANGUAGE
DESCRIPTION

Ladder Logic language, also called PC language, permits the
AutoMax distributed control system to perform sequential logic
operations in real time using industry standard ladder diagrams. The
ladder diagram structure is used to define the logic process and
establish the sequences and types of operations to be performed.

Along with the typical normally open and closed contact and coil
operations, AutoMax ladder logic also provides functions for
software timers, counters, shift registers, event coils, and remark
sequences, as well as functions for detecting transitions (rising or
falling edge) on bits.

The multi-tasking capability of the AutoMax distributed control
system allows it to run multiple ladder logic tasks, each with its own
scan period. In cases where all sequences do not require evaluation
at the same rate, you can create two or more tasks that execute at
different scan intervals. Multi-tasking conserves processing capacity,
since all ladder sequences need not be evaluated at a high rate to
satisfy the high scan rate requirements of a few key ladder
sequences.

An important feature of AutoMax ladder logic is its use of symbolic,
or variable, names in place of physical addresses. This allows you to
assign unique names up to 14 characters long to all internal points,
input and output points, timers, counters, and shift registers. In
addition, each element in a sequence can have a 40-character
description. The real-time display allows you to view the description
of any element in a sequence.

AutoMax Ladder Logic does not support arithmetic operations.
These functions are available in either the BASIC or the Control
Block languages. For additional information, see the AutoMax
Enhanced BASIC Language Instruction Manual J-3675 and AutoMax
Control Block Language Instruction Manual J-3676.

Note that Ladder Logic tasks can run on AutoMax Processors only. If
you are using Universal Drive Controller modules for drive control,
you cannot run Ladder Logic tasks on a UDC module. See J-3676
for more information.

Note that this instruction manual describes the ladder logic
language only. For more information about the the editor used to
create and edit ladder logic tasks in the AutoMax Executive
Software, refer to the ReSource AutoMax Programming Software
instruction manual.

Application Program Structures

A ladder logic task is a symbolic representation of a specific logic
process. It consists of one or more ladder sequences. The total
number of sequences allowed is limited only by the amount of
memory available and the complexity of the sequences. Ladder
logic operations are described in chapter 4.

3-1

A standard ladder logic sequence consists of a 6-row by 9-column
matrix of elements, plus a coil in the tenth column. Software timers,
counters, and shift registers consist of a 6-by-6 matrix of elements
with the coil in the tenth column. Sequences are numbered between
1 and 32767.

As in relay logic, series operations represent logical AND operations
and parallel branches represent logical OR operations. Figure 3.1
shows the basic sequence structure as it would appear on the

screen.

14_char 14_char 14_char
bithame bitname bitname

11 1l ()
14_char
bithame

11
14_char
bithame

11—

Figure 3.1 - Ladder Sequence Structure

The AutoMax Executive software will include the following in the
printout of a ladder program listing. Note that you can also print out
a cross reference of the program. See J-3684 for more information
about cross reference.

1. All sequences as entered

2. The 40-character description for each element (as four lines of
10 characters)

3. Cross-reference data for each coil beneath the coil symbol and
description

4. The type of variable (common in uppercase type and local in
lowercase type) used for each contact

5. The number of the sequence that defines each variable.
See Figure 3.2 for a sample printout of one sequence.

SEQUENCE 1000

40-Character

LINE RUN LINE STOP element description LOCAL
OPERATOR OPERATOR LINE RUN
BENCH 16 BENCH 16 STATUS
WIRE 1145 WIRE 1146 COIL
LINE LINE : .
- - Local variable line
RUN_IN STOP_IN (in lower case) —™ status
10 /1
Input Input — 110 —
. n Cross-reference }888 1070
LINE RUN R
STATUS Added by the sys- 4513 showing se- — _
u d /1
colL tem 1o Identlty quences where 7600
line these asinputs game coil occurs = [—
status 1090

1000 -=—— Sequence number where variable

is defined (same sequence in this
case)

3.2

3.3

Figure 3.2 - Sample Printout of Task Listing

Variable Names in Ladder Logic

All ladder logic operations must be assigned a symbolic, or variable,
name. The type of variable used depends on the type of operation
selected. Contacts and coils must be boolean (bit) variables, and all
other operations must be represented by integer variables. Names
must begin with a letter and can contain up to 14 alphanumeric
characters which are entered as two lines of seven characters.
Typing the underscore “_” on the first line inserts an underscore and
moves the cursor to the second line, allowing you to divide the
variable name into recognizable segments. The parentheses, “(*
and ")”, are used to specify arrays. See the examples below for valid
variable names:

OUTPUT OUTPUT_
ARRAY (10)

Variable Types in Ladder Logic

Each symbolic, or variable, name must be defined as one of two
types: local to the task or common to all Processors in a rack. The
AutoMax editor will prompt you for this information.

You should define a variable as local if it does not represent a
physical I/O point and it is not referenced by any other application
task. Local variables are typically used as temporary storage for
coils or for TIMER or COUNTER preset names which are not
referenced outside of the task.

You should define a variable as common if it is a physical I/O point
or it is referenced by another application task within the system. A
contact name which has not also been used as a coil name is
assumed to be common. All variables which are defined as common

33

must also be defined in the configuration for the rack in which the
ladder logic task will run. If you are using AutoMax Version 2.1 or
earlier, see the Configuration Task Instruction Manual (J-3649) for
more information on the configuration task.

By specifying a subscript with an array name, you can use boolean
array elements as contacts and coils. Arrays can be
one-dimensional only. The variable name is still limited to 14
characters, including the parentheses for enclosing the subscript
value. When an array name is specified, it is assumed to be
common, and it must therefore be defined in the configuration task
for the rack in which the ladder logic task will run. See the Enhanced
BASIC Language Instruction Manual, J-3675, for more information
on arrays. See figure 3.3.

OUTPUT_ SWITCH
ARAY(6) (10)

| ()

Figure 3.3 - Arrays Used As Contact and Coil

4.0

4.1

411

LADDER LOGIC LANGUAGE
OPERATIONS

You will probably recognize some operations, like the normally open
contact and coil, as standard ladder diagram operations commonly
used in programmable controller applications. Other operations
supported by AutoMax ladder logic, such as the upward transition,
are typically handled with multiple operations in one or more
additional sequences in most programmable controllers.

Contacts

AutoMax ladder logic supports four input operations specifically
designed to operate on bits of data in the ladder logic data buffer.
Each bit is associated with one of the following: digital input/output;
common memory; local memory; or the output of a counter, timer,
shift register, or event coil.

Normally Open Contact

The normally open contact operation reads the state of the specified
bit variable and, depending on the bit value, generates a logically
true or logically false condition.

If the bit is ON (1), the logical sense of the operation is TRUE. If the
bit is OFF (0), the logical sense is FALSE.

This operation can be located anywhere within the ladder diagram

except in the tenth element position (the right-most in the display).
This position is reserved for output operations. See figure 4.1.

14_char
bitname

— 11

4.1.2

Figure 4.1 - Normally Open Contact

Normally Closed Contact

The normally closed contact operation reads the state of the
specified bit variable and, depending on the bit value, generates a
logically true or logically false condition.

If the bit is OFF (0), the logical sense of the operation is TRUE. If the
bitis ON (1), the logical sense of the operation is FALSE.

This operation can be located anywhere within the ladder diagram
except in the tenth element position, which is reserved for output
operations. See figure 4.2.

4-1

14 _char
bitname

I/

4.1.3

Figure 4.2 - Normally Closed Contact

Upward Transition Contact

The upward transition contact operation causes the ladder logic to
determine if the bit has changed from the OFF to the ON state
during the last scan. Depending upon whether a transition occurs,
the ladder logic generates a logically true or logically false condition.

If the bit was turned ON (a 0 to 1 transition), the logical sense of the
operation is TRUE. If the bit is OFF (0) or still ON (1), i.e., there has
been no transition since the last scan, the logical sense of the
operation is FALSE.

This operation can be located anywhere within the ladder diagram
except in the tenth element position, which is reserved for output
operations.

14 _char
bitname

1U[

41.4

Figure 4.3 - Upward Transition Contact

Downward Transition Contact

The downward transition contact operation causes the ladder logic
to determine if the bit has changed from the ON to OFF state during
the last scan. Depending upon whether a transition occurs, the
ladder logic generates a logically true or logically false condition.

If the bit was turned OFF (a 1 to 0 transition), the logical sense of the
operation is TRUE. if the bit is ON (1) or still OFF (0), i.e., there has
been no transition since the last scan, the logical sense of the
operation is FALSE.

This operation can be located anywhere within the ladder diagram
except in the tenth element position, which is reserved for output
operations. See figure 4.4.

14_char
bitname

1]

4-2

Figure 4.4 - Downward Transition Contact

4.2

421

Output (Coil) Operations

Ladder logic language supports the following six output, or coil,
operations: COIL, ON-DELAY TIMER, OFF-DELAY TIMER,
COUNTER, SHIFT REGISTER, and SET EVENT. A variable name
can only be used once as a coil in a ladder logic task. See chapter 6
for details concerning the initial memory states for these functions.

Coil

The coil operation writes the state of the rung to the specified bit
variable. If the rung is logically true (ON), a 1 is stored at the
specified bit. if the rung is logically false (OFF), a 0 is stored at the
specified bit.

This operation must be located in the tenth element position, which

is reserved for output operations. Only one coil per sequence is
permitted. See figure 4.5.

14 _char
bitname

()

422

Figure 4.5 - Coil Operation

Timer

Ladder logic supports two types of software timers: On-Delay and
Off-Delay. Each timer consists of enabling logic in any combination
of contacts, lines, and spaces in a 6 row by 6 column matrix with the
timer coil in column 10. Only one coil per sequence is permitted.

Software timers require three additional parameters: Preset Name,
Preset Value, and Current Value Name. The Preset Name (PN) is the
name of the variable that contains the preset value. This variable can
be LOCAL to the task or COMMON to the system. If PN was defined
as COMMON, it can later be modified under software control by a
BASIC or Control Block program.

The Preset Value (PV) is the number of 0.1 second increments of

time that is initially stored in PN. The PV is limited to 32767 intervals

of 0.1 second. In the event of a STOP ALL or power cycle, PV will be
loaded and Current Value Name will be set to 0 unless Current Value
Name has been defined as a non-volatile COMMON memory I
variable.

The Current Value Name (CN) is the name of the variable that
contains the current value of the timer. This value is the elapsed
value, which is determined by the enable logic state (on or off). The
variable can be LOCAL to the task or COMMON to the system. If
Current Value Name is defined as a non-volatilie COMMON memory
variable, its value will be retained through a STOP_ALL or power
cycle. Refer to Figure 4.6.

4-3

14 _char 14 _char
bitname bithname
IN ouT (ON) IN ouT (OFF)
TIMER TIMER

PN: preset name
PV: preset value

CN: current value
name

CV: current value

PN: preset name
PV: preset value

CN: current value
name

CV: current value

Figure 4.6 - Timer Output Blocks

The On-Delay timer provides a logically true output whenever the
input is true and the preset time interval has elapsed. Whenever the
input is false, the elapsed count is initialized to zero. When the input
is true, the elapsed time is incremented at 0.1 second intervals.
When the elapsed count reaches the preset value and the input is
true, the output is also true. See figure 4.7.

Time
| Delay |
Logic Enable | I
I |
I I
I
Caoil Output _|_| |_

I |
I |
I
Current Value | :
I |
I I

On-Delay Timer

4-4

Figure 4.7 - Operation of On-Delay Timer

The Off-Delay timer provides a logically false output whenever the
input is false and the preset time interval has elapsed. Whenever the
input is true, the elapsed count is initialized with the preset count.
When the input is false, the elapsed count is decremented towards
zero at 0.1 second intervals. Whenever the elapsed count is zero
and the input is false, the output is also false. See figure 4.8.

Ii I
Logic Enable |

Coil Output J | I
I I
I I

Current Value _|_i/_

Off-Delay Timer

423

Figure 4.8 - Operation of Off-Delay Timer

Counter

The software counter is an up-down counter capable of counting
over the range of +/- 32767. The counter consists of a counter block
and the logic that drives it. The logic can be any combination of
contacts, lines, and spaces in a 6-row by 6-column matrix. The
counter block contains three inputs (UR, DOWN, and RESET) that
must always terminate in the first, third, and fifth rungs in the ladder
diagram.

Counters require three additional parameters: Preset Name, Preset
Value, and Current Value Name. The Preset Name (PN) is the name
of the variable that contains the desired count value. This variable
can be local to the task or common to the system. If PN was defined
as common, it can be modified under software control by the BASIC
or control block program.

The Preset Value (PV) is the count value that is initially stored in PN.

In the event of a STOP ALL or power cycle, PV will be loaded and
Current Value Name will be set to 0 unless Current Value Name has
been defined as a non-volatile COMMON memory variable. I

The Current Value Name (CN) is the name of the variable that
contains the current elapsed value of the counter. This variable can
be local to the task or common to the system. If Current Value Name
is defined as a non-volatile COMMON memory variable, its value is
retained through a STOP_ALL or power cycle. The elapsed value is
determined by the state (on or off) of the UR, DOWN, and RESET
logic state. See Figure 4.9.

4-5

14_char
bitname

()

— UP out
COUNTER

PN: preset name
PV: preset value

— DOWN

CN: current value
name
CV: current value

— RESET

46

424

Figure 4.9 - Counter

The counter provides a logically true output whenever the elapsed
counts are greater than or equal to the preset count. Whenever a
positive transition (input changes from 0 to 1) is received at the UP
or DOWN input, the internal elapsed count will be incremented or
decremented accordingly. If a transition is received at both inputs
during the same scan, no change will take place.

Whenever the elapsed count is greater than or equal to the preset
count, the output coil will be true. The elapsed count will change in
response to inputs up to a maximum of +/- 32767, regardless of the
value of the preset count. Whenever RESET is high, the elapsed
count will be reset to zero. The RESET input overrides all other
inputs.

Shift Register

The software shift register has a variable length up to 16 bits and
shifts to the right. The shift register consists of a shift register block
and the logic that drives it. The logic can be any combination of
contacts, lines, and spaces in a 6-row by 6-column matrix. The shift
register block contains three inputs (DATA, SHIFT, and RESET) that
must always terminate in the first, third, and fifth rungs in the ladder
diagram.

Shift registers require two additional parameters: Shift Register
Length and Current Value Name.

The Shift Register Length (LEN) is the length (</=16 bits) of the shift
register. This parameter must be entered as an integer constant
rather than a variable name.

The Current Value Name (CN) contains the name of the variable that
contains the current elapsed value of the shift register. In the event
of a STOP ALL or power cycle, Current Value Name will be set to 0
unless it has been defined as a non-volatile COMMON memory
variable. In this case, it will retain its current value. This variable can
be local to the task or common to the system. The elapsed value is
determined by the state (on or off) of the DATA, SHIFT, and RESET
logic. See Figure 4.10.

14_char
bitname

()

— DATA out
SHIFT

LEN: register length (<16 bits)

— SHIFT

CN: current value
name

CV: current value

— RESET

425

Figure 4.10 - Shift Register

Whenever a positive transition occurs (change from 0 to 1) at the
SHIFT input, the data present on the DATA input will be shifted into
the left-most bit in the shift register. In addition, all of the bits in the
shift register will shift one position to the right. The state of the
output coil is always equal to the state of the right-most bit in the
shift register. The RESET input will reset the entire shift register. The
RESET input overrides all other inputs.

Event Coil

A software Event Coil provides synchronization with BASIC and
Control Block tasks in the same rack. The software Event consists of
a coil and the logic that drives it. The logic that drives it can be any
combination of contacts, lines and spaces in a 6-row by 6-column
matrix. The Event Coil is valid only in column 10, and only one Event
Coil per statement is permitted.

The software Event requires one additional parameter: the Event
Name. The Event Name (EN) is the name of the software event. The
Event is set by an upward transition of the SET input. This results in
a logically TRUE output. See figure 4.11.

14 char
bitname
— SET ouT ()

EVENT

EN: event_name

Figure 4.11 - Event Coil

47

4.3

When using the software event you must insure that another task
responds to any EVENTs when they are set. Otherwise, once the
system counts the maximum of 32767 events, a STOP ALL/CLEAR
will occur.

REMARK Sequence

Ladder Logic supports a REMARK sequence to provide additional
documentation within the ladder program. Up to 16 lines of text may
be entered for each REMARK sequence.

A REMARK sequence consists of a sequence number and a
REMARK keyname. The keyname may contain up to 14 characters
and must be unique within the task. Refer to Figure 4.12.

REMARK: Keyname

48

Figure 4.12 - REMARK Sequence

The text associated with the keyname is not contained in the ladder
logic program itself but resides in a separate file that you create with
the AutoMax text editor. Remarks are stored in the file as follows:

! keyname

They can be followed by 0-16 lines of ASCII text. Refer to the
ReSource AutoMax Programming Instruction Manual (J-3684 or
J-3750) for more information on creating REMARK sequences.

5.0 TASK EXECUTION

When a ladder logic task is turned ON, the initial state of all volatile
coil variables will be false (OFF or 0) and no transitions are detected
as a result of turning the task ON. Common coil names, which are
defined in the configuration task for the chassis as non-volatile, or
NVMEMDEF variables, are left unchanged.

In order to be detected, a transition must occur while the task is
running. This also applies to transitions which might result from a
variable being forced. Consequently, if a variable is forced to a
particular state while the task is turned off, a transition will not be
detected when the task is then turned on. If, on the other hand, a
variable is forced while the task is running and the forced state
causes a transition, this transition will be detected by the task.

Transition contacts that reference external inputs will detect the
transition in the next scan that runs after the transition occurs.
Transition contacts that reference a coil in the task will detect the
transition in the same scan in which the coil changed state if they
are located in sequence after the coil. Otherwise they will detect the
transition in the next scan.

WARNING

DEPENDING ON THE APPLICATION, TURNING ON A TASK MAY CAUSE
OUTPUTS TO CHANGE STATE. THIS MAY CAUSE UNEXPECTED MACHINE
MOVEMENT. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN

BODILY INJURY.

5.1 Buffering

Each ladder logic task will read all of its COMMON variables and
save them in a local buffer before each scan begins. This insures
that inputs will remain in a single state for the duration of the scan.
After each sequence is evaluated, its coil is updated in the local
buffer. Subsequent references to that coil will obtain the current
state. At the end of each scan, the outputs are written from the local
buffer to their actual physical location.

5-1

6.0

6.2

STOPPING A TASK
CONTAINING COILS WITH
INTERNAL MEMORY

Timers, counters, and shift registers all have internal memory
associated with them. The memory will be in one of two possible
states after a ladder logic task has been stopped.

Task Stopped with STOP Command

If the task was stopped by the operator through a STOP command,
the internal memory for timers, counters, or shift registers is left
unchanged from its state at the time the task was stopped.
Therefore, if a timer was timing at the time the task was stopped, it
will continue from where it left off when the task is restarted.
Likewise, the value of any counter at the time the task was stopped
is retained and counting continues from that value. The value of any
shift register is also retained, and shifting continues with that
accumulated data. Note that the Past state for inputs that are
transition detected is left in the state the inputs were in when the
task was stopped.

Task Stopped Through Power Loss or with
STOP ALL Command

If all tasks were stopped either through power loss or with a STOP
ALL command, the internal memory for timers, counters, or shift
registers is usually set to the same state it was in when the task was
initially downloaded to the Processor module. See below for specific
details on each operation.

ON-DELAY TIMER

Current value is set to the RESET state, i.e., the timer is ready to

begin timing when the INPUT becomes TRUE, unless Current Value
Name has been defined as a non-volatile COMMON memory I
variable. In this case, the current value is retained.

OFF-DELAY TIMER

Current value is set to the “timed out” state, i.e., the timer has
already timed and expired unless the Current Value Name has been
defined as a non-volatile COMMON memory variable. In this case,
the current value is retained. A TRUE state on the INPUT is required
to RESET the timer, after which a FALSE state on the INPUT will
cause the timer to begin timing.

COUNTER

Current value is set to zero unless the Current Value Name has been
defined as a non-volatiie COMMON memory variable. In this case,

the current value is retained. The past states of the UP and DOWN
inputs are set FALSE.

6-1

6-2

SHIFT REGISTER

Current value is set to zero unless the Current Value Name has been
defined as a non-volatile COMMON memory variable. In this case,
the current value is retained. The past state of the SHIFT input is set
FALSE.

EVENT COIL

The past state of the input is set FALSE to recognize the first rising
edge.

7.0

MEMORY USAGE
ESTIMATES

The execution time for a ladder logic task can be estimated using
the following timing estimates. After the total execution time is
computed, divide by the scan time to obtain an estimate of the CPU
usage for the task. A maximum of 2047 different symbols may be
used in a single task.

Execution Time and Memory Usage Estimates

EXECUTION TIME AND

6010 7010 Memory
Ladder Logic Operation Execution Execution Usage
Timeinusec.| Time in usec. in Bytes
Normally Open Contact 1.5 0.5 6
Normally Closed Contact 1.5 0.5 6
Transition Contacts
AND 3.0 1.0 10
OR 3.5 1.2 12
Coils 26.0 7.1 8
Timers 50.0 14.7 24
Counters 50.0 14.0 24
Shift Registers 41.0 11.9 24
Events
Event Set 272.0 152.0
Event Not Set 18.0 9.6 24
Remark 11.0 3.5 24
Variables 8+ # of
characters in name
System Overhead - fixed 314 100 3000
System Overhead - variable 18c + of 6c + 3f c/n*10 +
10 per sequence
Key:
¢ = number of common variables
f = number of forced variables
n = packing density, a function of how the common booleans are stored in

memory. The value can range from 1 (worst case) to 16 (ideal case).
Use a value of 8 as an estimate.

7-1

1.

1.

Appendix A

Converting a DCS 5000 Ladder Logic Task
to the Current Version of the AutoMax
Executive Software

You can easily convert any version 4 DCS 5000 Ladder Logic
application task to run in an AutoMax processor. The only
substantial difference between DCS 5000 and AutoMax Ladder
Logic that is visible to the user is the Current Value Name (CN)
parameter added in On-Delay and Off-Delay Timers, the Counter,
and the Shift Register.

Programs that have been converted to AutoMax cannot be
converted back to DCS 5000 format unless they are re-entered in
their entirety.

The Ladder Logic/PC Editor in AutoMax will automatically convert
your DCS 5000 task to AutoMax when you use the Editor to open
the task, and then save the task again. You will see the message
“Converting DCS 5000 to AutoMax” flash briefly on the screen when
you open such a task. The Editor will simply add the Current Value
parameter to the On-Delay, Off-Delay, Counter, and Shift Register
operations in the task. It will assign variable names to Current Value
Names in one of two methods. Method 1 is used when converting a
DCS 5000 Ladder Logic task to AutoMax Version 1. Method 2 is
used when converting a DCS 5000 Ladder Logic task to AutoMax
Version 2.0 or AutoMax Version 3.0.

Method 1

The Editor will search the task for any of the following variable names
(asterisks denote any character):

The first variable not found in the task will be used as the base for all Current
Value variable names the Editor adds.

The Editor will append a number, beginning with 1 and increasing by 1 each
time, after the underscore found at the end of the variable (note that all
variables listed end with an underscore).

When you open the task again, the Current Value Names will have
been added. If you want any Current Value Name to represent a
common (as opposed to a local), you must revise your configuration
task for the rack in which the task will run to include these variables.

Method 2

AutoMax Version 1.0 B and later uses the following method to
assign variable names to Current Value Names.

The Editor will create the Current Value Name by prefixing the Coil name for
the element with “CV_".

A1

RE 1857LC Printed in U.S.A.

RELIANCE CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will affect. Include markeups from
the document or attach additional pages if necessary.)

What will this improvement suggestion provide?

Qriginator: City: State: ZIP:
Company: Phone: ()

Address: Date:

Technical Writing Internal Use: Follow-Up Action:

Writer: Date:

Thank you for your comments . . .

HELIANCE’.
ELECTRICH |

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599

Power, Conirol and Infor ion Soluti Headquarters
Amcdmsmmlmlmmﬂmmwsmﬂ%m&mﬂ)ﬂmmsz:(1)4143824444
du 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640

AsiaPadﬁc Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication J-3677-4 - May 1994 Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in U.S.A.

