
AutoMax®
Ladder Logic

Language

Industrial

CONTROLS

Instruction Manual J-3677-4

ONEE
ELECTRIC&L/

The information in this user’s manual is subject to change withoutnotice.

DANGER

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH’ THE
CONSTRUCTION AND OPERATION OFTHIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE, OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALSIN THEIR ENTIRETY BEFORE PROCEEDING.FAILURE
TO OBSERVETHIS PRECAUTION COULD RESULT IN SEVERE BODILY INJURY
OR LOSSOFLIFE.

WARNING

PROGRAMS INSERTED INTO THE PRODUCT SHOULD BE REVIEWED BY
QUALIFIED PERSONNEL WHOAREFAMILIAR WITH THE CONSTRUCTION AND
OPERATION OF THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULTIN BODILY INJURY.

 WARNING

THE USER MUST PROVIDE AN EXTERNAL, HARDWIRED EMERGENCY STOP
CIRCUIT OUTSIDE THE CONTROLLER CIRCUITRY. THIS CIRCUIT MUST
DISABLE THE SYSTEM IN CASE OF IMPROPER OPERATION UNCONTROLLED
MACHINE OPERATION MAYRESULTIF THIS PROCEDUREIS NOT FOLLOWED.
FAILURE TO OBSERVETHIS PRECAUTION COULD RESULTIN BODILY INJURY.

Norton®is a registered trademark of Peter Norton Computing,Inc.
MODBUS®is a registered trademark of Gould, Inc.
IBM™ is a trademark of International Business Machines.
Reliance®, AutoMax®, and AutoMate® are registered trademarks of Reliance

Electric Companyorits subsidiaries.
Shark™ ,R-Net™, and ReSource™ are trademarksof Reliance Electric Company

or its subsidiaries.

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Table of Contents

INTRODUCTION ... 00. cece cece eee eee e ee eeeeeee 1-1

1.1 Compatibility with Earlier Versions0....000 0 1-1

1.3 Related Hardware and Software 0.00: e eee eee 1-2

PROGRAMMING FORAutoMax SYSTEMS005 2-1

2.1 Configuration ceceeens 2-4

2.2 Application Tasks 0... ceceeee 2-2

2.3 Variables and Constants 0.0 c cece e eee eee 2-3

2.3.1 Variables 0.0.0...eeeeee 2-3

2.3.2 Subscripted Variables (Arrays)2-2.0eee eee 2-4

2.3.3 Variable Control Types 0.00. c eee eee eee eee 2-6

2.3.4 Pre-defined Common Memory Variables 2-7

LADDER LOGIC LANGUAGE DESCRIPTION..............255. 3-1

3.1. Application Program Structures eee e eee eee 3-1

3.2 Variable Names in Ladder Logic cece eee eee 3-3

3.3 Variable Types in Ladder Logic 0... c cee eee eee 3-3

LADDER LOGIC LANGUAGE OPERATIONS..............2+55 4-1

4.1 Contacts... ..ceeeens 4-1

4.1.1 Normally Open Contact cee eee eee 4-1

4.1.2 Normally Closed Contact:: eee eee eee 4-1

4.1.3 Upward Transition Contacte eee ee eee 4-2

4.1.4 Downward Transition Contact-.2eeeee ee 4-2

4.2 Output (Coil) Operations eeeeee 4-3

4.2.1 Coil 0...eeeeee 4-3

4.2.2 TIM@r 2...eeeeens 4-3

4.2.3 Counter. 0. ceceeee teens 4-5

4.2.4 Shift Register 0. eee eeeeee 4-6

4.2.5 Event Coil 0.ceeeee4-7

4.3 REMARK Sequence-.0: cece eee eee eens 4-8

TASK EXECUTION ccc ceceeeeeeeeeee 5-1

5.1 Buffering 0... ccceeetenes 5-1

STOPPING A TASK CONTAINING COILS WITH
INTERNAL MEMORY............000e eee ee eee e eee ee eeeeeee 6-1

6.1 Task Stopped with STOP Command00ee eee 6-1

6.2 Task Stopped Through PowerLossor with

STOP ALL Command 00: cece eee eee eee 6-1

EXECUTION TIME AND MEMORYUSAGEESTIMATES........ 7-1

Appendices

Appendix A

Converting a DCS 5000 Ladder Logic Task to the Current Version
of the AutoMax Executive Software: cee eee eee ee A-1

List of Figures
Figure 3.1 - Ladder Sequence Structure 0c. cee e eee eee 3-2
Figure 3.2 - Sample Printout of Task Listinge eae 3-3
Figure 3.3 - Arrays Used As Contact and Coil....................000, 3-4

Figure 4.1 - Normally Open Contact 0.0... cccc 4-1
Figure 4.2 - Normally Closed Contact 2... c cece ener ee 4-2
Figure 4.3. - Upward Transition Contact 00... c cece eee eee 4-2
Figure 4.4 - Downward Transition Contact eee eee eee 4-2

Figure 4.5 - Coil Operation 0.0 ceceees4-3
Figure 4.6 - Timer Output Blocks 0... cece eee eee 4-4
Figure 4.7 - Operation of On-Delay Timer 0 ccc e eee ee 4-4
Figure 4.8 - Operation of Off-Delay Timer0 cee eee 4-5
Figure 4.9 - Counter.......... 0... cece eeeene4-6
Figure 4.10 - Shift Register ccc e eee eee eee eee 4-7
Figure 4.11 - Event Coil... 2...eee4-7
Figure 4.12 - REMARK Sequence-. 2. cece eee eee eee 4-8

List of Tables

Execution Time and Memory Usage Estimates005 7-4

1.0

1.1

INTRODUCTION
The products described in this manual are manufactured or
distributed by Reliance Electric Industrial Company.

The AutoMax Programming Executive software includes the
software used to create Ladder Logic programs.Instruction manual
J-3684 describes the AutoMax Programming Executive software
Version 2.0. Instruction manual J-3750 describes the AutoMax
Programming Executive software Version 3.0. Instruction manual

J2-3045 describes the AutoMax Programming Executive software
Version 3.3. Instruction manual J2-3066 describes the AutoMax
Programming Executive software Version 3.4. This instruction

manual describes AutoMax Ladder Logic languagefor version 2.0
and later AutoMax Programming Executive software.

Featuresthat are either new ordifferent from those in version 1.0
AutoMax Programming Executive software (M/N 57C304 through
57C307) are so noted.

This instruction manualis organized as follows:

1.0 Introduction
2.0 General information about programming for AutoMax systems
3.0 General information about programming in Ladder Logic/PC
4.0 Ladder Logic operations

5.0 Task execution
6.0 Stopping tasks with internal memory coils
7.0 Execution time and memory usage

Appendix A Converting tasks created with previous versions of
the Executive software to the current version

Appendix B AutoMax Processor Compatibility with versions of the

AutoMax Programming Executive

Compatibility with Earlier Versions

Version 2.0 of the AutoMax Programming Executive requires
AutoMax Processor M/N 57C430A or 57C431; Version 3.0 and later
require AutoMax Processor M/N 57C430A, 57C431, or 570435. M/N
57C430 cannot co-exist in the same rack with M/N 57C430A,

57C431, or 57C435.

Refer to Appendix for listing of the AutoMax Processor modules
that are compatible with Version 2 and later of the AutoMax

Programming Executive software.

Thethick black bar shownat the right-hand margin of this page will

be used throughoutthis instruction manual to signify new or revised
text or figures.

1-1

1-2

1.2

1.3

Additional Information

You should be familiar with the instruction manuals which describe
your system configuration. This may include, but is not limited to,
the following:

e J-3618 NORTON EDITOR REFERENCE MANUAL

@ J-3649 AutoMax CONFIGURATION TASK INSTRUCTION
MANUAL

e@ J-3650 AutoMax PROCESSOR INSTRUCTION MANUAL

e@ J-3675 AutoMax ENHANCED BASIC INSTRUCTION MANUAL

e J-3676 AutoMax CONTROL BLOCK LANGUAGE
INSTRUCTION MANUAL

e J2-3018 AutoMax REMOTE I/O SHARK INTERFACE
INSTRUCTION MANUAL

e Your ReSource AutoMax PROGRAMMING EXECUTIVE

INSTRUCTION MANUAL

@ Your personal computer and DOSinstruction manuals

e |EEE 518 GUIDE FOR THE INSTALLATION OF ELECTRICAL
EQUIPMENTTO MINIMIZE ELECTRICAL NOISE INPUTS TO
CONTROLLERS

Related Hardware and Software

M/N 57C390 contains the AutoMax Programming Executive software
Version 2.0 on 51/4” floppy disks and a set of hardware and software
reference manuals. M/N 57C391 contains the AutoMax
Programming Executive software Version 2.0 on 31/5” floppy disks

and a set of hardware and software reference manuals. M/N 57C395
contains the AutoMax Programming Executive software Version 3.X
on both 51/,” and 31/5”floppy disks and a set of hardware and
software reference manuals. The two model numbers are sold
separately and are identical except for the size of the floppy disks.
The Programming Executive software includes the tools required for

programmingin Enhanced BASIC, Control Block, and Ladder
Logic/PC languages.

M/N 57C392 and 570393 are the AutoMax Programming Executive
Version 2.0 software updates. The two model numbers are sold
separately and are identical except for the disk size. M/N 57C397is

the AutoMax Programming Executive Software Version 3.X update.

These updates effectively upgrade your existing software to the
most current version.

The AutoMax Programming Executive software is used with the

following hardware, which is sold separately.

1. M/N 57C430A, 57C401, or 57C435 AutoMax Processor.

2. IBM-compatible 80386-based personal computer running DOS
Version 3.1 or later.

3. M/N 61C127 RS-232C ReSourceInterface Cable. This cable is
used to connect the personal computer to the Processor

module.

4. M/N 57C404<A(andlater) Network Communications module.
This module is used to connectracks together as a network and

supports communication with all racks on the network that

contain 57C404A modules through a single Processor module.

M/N 57C404 can be used to connect racks on a network;
however, you cannot communicate over the network to the

racks that contain M/N 57C404 Network modules. You must

instead connect directly to the Processors in those racks.

5. M/N 57C413 or 57C423 Common Memory module. This module
is used when there is more than one Processor module in the

rack.

6. M/N 57C492 Battery Back-Up. This unit is used whenthere is a
M/N &7C413 Common Memory modulein the rack.

7. M/N 57C384 Battery Back-Up Cable. This cable is used with the
Battery Back-Up unit.

8. M/N 57C554 AutoMax Remote |/O Shark Interface Module. This

module is used to connect a Shark remote rack to the AutoMax

Remote I/O network.

9. M/N 57552 Universal Drive Controller module. This module is

used for drive control applications.

2.0 PROGRAMMING FOR

2.1

AutoMax SYSTEMS
In AutoMax systems, application programs,also referred to as tasks,
can be written in Ladder Logic/PC language, Control Block
language, and Enhanced BASIC language. Refer to J-3675 and
J-3676 for more information about BASIC and Control Block
programming.

In addition to multi-processing, AutoMax systemsincorporate

multi-tasking. This means that each AutoMax Processor(up to four)

in a rack allows real-time concurrent operation of multiple

application tasks.

Multi-tasking features allow the programmer’s overall control
schemeto be separatedinto individual tasks, each written in the

programming language best suited to the task. This simplifies
writing, check-out, and maintenanceof programs; reduces overall

execution time; and provides faster execution forcritical tasks.

Programming in AutoMax systemsconsists of configuration, or

defining the hardware, system-wide variables, and application tasks
in that system, as well as application programming.

Configuration

Version 3.0 and Later Systems

If you are using AutoMax Version 3.0 orlater, you configure the
system within the AutoMax Programming Executive. See the

AutoMax Programming Executive instruction manualfor information

about configuration if you are using Version 3.0 or later. The
information on configuration that follows is applicable only if you are

using AutoMax Version 2.1 orearlier. If you are using AutoMax 3.0 or
later, you can skip over the remainderof this section and continue

with 2.2.

Version 2.1 and Earlier Systems

AutoMax Version 2.1 and earlier requires a configuration task in
orderto define the following:

1. All tasks that will reside on the Processorsin a rack.

2. All variables that equate to physical I/O in the system.

3. All other variables that must be accessible to all

Processorsin the rack.

One configuration task is required for each rack that contains at
least one Processor. The configuration task must be loaded onto the
Processor(s) in the rack before any application task can be

executed becauseit contains information about the physical
organization of the entire system.

The configuration task does not actually execute or run; it serves as

a ceniral storage location for system-wide information. Note that
local variables, those variables that do not need to be accessible to
more than onetask, do not need to be defined in the configuration
task. Refer to J-3649 for more information about configuration tasks.

2-1

2-2

2.2 Application Tasks

AutoMax Processorsallow real-time concurrent operation of multiple

programs,or application tasks, on the same Processor module. The

tasks are executed on a priority basis and share all system data.

Application tasks on different Processor modulesin the rack are run

asynchronously.

Each task operates on its own variables. The same variable names

may beusedin different tasks, but each variable is only recognized
within the confinesof its task unlessit is specifically designated a

COMMONvariable. Changing local variable ABC% (designated
LOCAL)in onetask has no effect on variable ABC% in any other
task.

Multi-tasking in a control application can be comparedto driving a
car. The programmercanthink of the different functions required as

separate tasks, each with its own priority.

In driving a car, the operator must monitor the speedometer,
constanily adjust the pressure of his foot on the gas pedal, check
the rearview mirrorfor othertraffic, stay within the boundaries of his
lane,etc., all while maintaining a true course to his destination. All of
these functions have an importanceorpriority attached to them,

with keeping the car on the road being the highestpriority. Some
tasks,like monitoring the gasoline gauge, require attention at

infrequentintervals. Other tasks require constant monitoring and
immediate action, such as avoiding obstacles on the road.

In a control application the Processor needsto be able to perform

calculations necessary for executing a control scan loop, monitor an
operator’s console, log error messagesto the console screen,etc.
Of these tasks, executing the main control loop is obviously the
most important, while logging error messagesis the least important.

Multi-tasking allows the control application to be broken downinto

suchtasks, with their execution being dependent uponspecified
“events,” such as aninterrupt, operatorinput, or the expiration of a

time interval.

The following table is a representation of typical tasks found in a
control application and the kind of event that might trigger each.

Task Triggering Event

Execute main control loop Expiration of a
hardwaretimerthat

indicates the interval

at which to begin a

new scan

Respondto externalI/O input Generation of a
hardwareinterrupt by

an input module

Read operator data Input to an operator
panel

Log information Expiration of a
software timer

Eachof these tasks would be assigned priority level (either in the
specific configuration task for the rack,or in later versions of the

Programming Executive software, through the configuration option).
The priority determines which task should run at any particular

instant. The more important the task, the higherthe taskpriority.

2.3

2.3.1

Variables and Constants

All operations performed in AutoMax tasks use constants or
variables. Constants, also knownasliterals, are quantities with fixed
value represented in numeric format. Variables are names that
represent stored values or physical I/O. These values may change
during program execution. BASIC languagetasks always use the
current value of a common(i.e., system-wide) variable in performing
calculations.

Control Block and PC/Ladder Logic tasks capture (latch) the values
of all commonsimple double integer, integer, and boolean variables
at the beginning of the task scan. Strings, reals, and array variables
of any type are not latched. This meansthat control Block and

PC/Ladder Logic tasks do not see the most current state of common
simple double integer, integer, and boolean variables; instead, they
seethe state of these variables at the beginning of the scan. Any
changes madeto these variable values by Control Block or
PC/LadderLogic tasks are written to the variable locations at the

end of the scan ofthis particular task. See section 2.3.3 for more

information about commonvariables.

Variables

The following section describes the variable types in AutoMax tasks.

Whenconstants are usedin tasks, they mustfall into the ranges
specified. For example, an integer constant mustbe in the range

specified for integers, +32767 to —32768. Note carefully thatall
variable types cannot be usedin all programming languages.

1. Long Integer or Double Integer Variables

Usedto store 32 bits. The value can bein the range
+2147483647 to —2147483648 with no fractional part. The
terminating characteris !. If you assign a real number (see #3
below) to an integer variable, the fractional part will be

truncated.

2. Integer or Single Integer Variables

Usedto store 16 bits. The value can be in the range +32767 to
—32768 with no fractional part. The terminating characteris %.If

you assign a real number(see #3 below)to the variable, the
fractional part will be truncated. Note that all internal integer

calculations are in double precision,or 32bits.

3. Real Variables

Used to store a decimal value. The value can bein the following
ranges:

9.2233717 x 10**18 > positive value >

5.4210107 x 10 ** (—20)
—9.2233717 x 10**18 > negative value >

—2.7105054 x 10 ** (—20)

There is no terminating character for real variables. Use
scientific notation to enter large numbers. Use double asterisks
to indicate exponentiation.

2-3

2.3.2

2-4

Only eight digits of significance are accepted. The format for
entering real constants is as follows:

{sign} {digits} {.} {digits} {E}{sign} {digits}

For example: —1234.5678E+11

Real variables cannot be used in Ladder Logic tasks.

4. Boolean Variables

Usedto store the status of 1 bit. The value can be either TRUE
or FALSE or ONor OFF. The terminating character is @. Note
that in BASIC tasks, the inverted sense (negative of the current

state) of a boolean variable is indicated with NOT. In Control

Block languageonly,the inverted sense of a booleanvariable
can beindicated by entering a minussignin front of the name
whenreferencingit in the application task. For example,

STATUS@indicates the normal sense of variable STATUS@,
while —STATUS@ would indicate the inverted sense of variable
STATUS@.

5. String Variables

String variables are used to store any alphanumeric sequenceof

printable characters, including spaces, tabs, and special
characters. The terminating characteris $. String variables

cannot be used in Ladder Logic tasks.

Subscripted Variables (Arrays)

Array variables are usedto store a collection of data all of the same
data type. Arrays are permitted for all data types. Arrays are limited

to four dimensions, or subscripts. The numberof elements in each

dimensionis limited to 99999. This sizeis further limited by available

memory. The term array is used to denotethe entire collection of

data. Eachitem in the array is known as an element.

Array variables are specified by adding a subscript(s) after the
variable name whichincludes the appropriate terminating character

to denote the type of data stored in the array. The terminating
characteris followed by a left parenthesis, the subscript(s), and a

right parenthesis. Multiple subscripts are separated by commas.
Note that subscripts can be integer constants as well as arithmetic

expressionsthat result in integer values.

array variable name

A%(5)

J subscript

terminating character
(denotes variable

type)

An array with one dimension, i.¢., one subscript, is said to be
one-dimensional. An array with two subscripts is said to be
two-dimensional, etc. The first element in each dimension of the
array is always element 0. Therefore, the total number of elementsin

each dimension ofthe array is always one morethanthe largest
subscript. For example, array A%(10) is a one-dimensional array

containing eleven integer values.

Example 1 - One-dimensionalarray

0; 1/2] 3) 4] 5

185) 2] 53] 79) 99/122

A%

value of A

Example 2 - Two-dimensional array

B% (6, 3)

O; 1) 2] 3) 4] 5] 6

0 1185) 2 53] 79) 99/122) 40

1 70) 36| 46] 31] 34] 85] 6

B%

77| 73} 21|365| 476 51] 47

3 18] 23) 53/342) 39 224) 107

In the case of string arrays, version 1.0 Executive software always
allocated the maximum amount of memory for each elementin the

array, regardless of whetherthe string stored in that element was of
the maximum length, 31 characters. Version 2.0 (and later)

Executive software allows the programmerto specify the maximum
size of elementsin the array, from 1 to 255 characters.

To specify the maximum size ofstring variables in an array, add a
colon and a number(1-255) immediately after the $ character when

declaring the variable in an application task or defining it during
configuration. For example, defining A$:10(20) as a local variable in

an application task allocates spacefor 21 string values of 10

characters each. Note that if no length is specified in the initial array
reference, the default maximum is 31.

To define an array that will be common,i.e., accessibleto all tasks in
the rack, you needto first define the variable.If you are using
AutoMax Version 2.1 or earlier, this is done with a MEMDEFor
NVMEMDEFstatementin the configuration task for the rack. If you
are using AutoMax Version 3.0 or later, common variables are

defined within the Programming Executive. For example,
ARRAY1@(10)will allocate space for 11 boolean variables. Then,in
an application task for the rack, you declare the array a COMMON
variable as follows:

COMMONARRAY1@(10).
Each elementof the array that will be used in the task can be
defined with LET statements as follows:

LET ARRAY1@(0) = TRUE

(boolean values can only be TRUE/FALSE or ON/OFF). Other
application tasks in the rack can accessthe valuein variable

ARRAY1@(0) simply by declaring ita COMMONvariable.

2-5

2.3.3

2-6

Variable Control Types

The control type of a variable refers to the way the variable is
declared or defined in the rack configuration and application tasks.
There are two control variable types in AutoMax systems,local and
common.

1. Local

Local variables are variables that are not defined in the
configuration for the rack and are therefore accessible only to
the application task in which they are defined. BASIC and

Control Block tasks must define the variables with a BASIC

LOCAL statement. For Ladder Logic/PC tasks, the editor
prompts for whetherthe variable is local or common when the

task is being created.

In BASIC and Control Block tasks, local variables can be
defined as tunable. Tunables are variables whose value can be
tuned,i.e., changed within limits, by the operator through the
On-Line menuof the Executive software. The value of tunable
variables can also be changed by application tasks by using the
BASIC language WRITE_TUNEfunction. BASIC and Control
Block tasks must define tunable variables with a variation of the

BASIC LOCALstatementthat includes the tuning parameters.
Ladder Logic/PC tasks cannot use tunable variables.

The value of local variables at the timeofinitial task installation
is always 0. The effect of a Stop All or a powerfailure on variable
values in the rack dependsonthe variable type. Local tunable
variable values in both AutoMax and UDC application tasks are

always retained. Local variable values are retained for AutoMax
tasks, but not for UDC tasks.

AutoMax Processorswill retain the last valuesof all local

variables. UDC moduleswill retain the variable values for the
following: parameter configuration data, UDC test switch
information, and D/A setup configuration. The variable values of
the following input data will also be retained: feedbackregisters,
UDC-PMI communication status registers, and UDC task error
log information. UDC moduleswill NOT retain local variable
values and data foundin the following registers, which are
considered outputs: commandregisters, application registers,
the ISCR(interrupt status and control register), scans per

interrupt register, and scansperinterrupt counter register. See
the AutoMax Programming Executive instruction manual for

more information on the STOP ALLand system re-initialization

conditions.

Common

Commonvariables are variables that are defined in the
configuration for the rack and are therefore accessible toall
application tasks in the rack. There are two types of common

variables, those that refer to memory locations, and those that

refer to actual physicalI/O locations. The two types are defined
differently in the configuration task for the rack.

2.3.4

Common memory variables can beof any data type. They may
be read to or written from. CommonI/O variables are long
integer, integer, or boolean variables that represent actual

physical |/O locations. Common |/O variables that represent
inputs may be read but notwritten to. I/O variables that

represent outputs may be read orwritten to.

All tasks that need to access commonvariables can do so by

using the BASIC statement COMMON.For Ladder Logic/PC
tasks, the editor prompts for whetherthe variable is local or

commonwhenthetask is being created. At least one BASIC or
Control Block task in the rack shouldalsoinitialize common
memory variables, i.e., assign values to them,if they need to be

at a knownstate other than 0.

The value of commonvariables at the timeofinitial task

installation depends upon whetherthe variable references
memory or physical I/O locations. Common memory variables
are always0 at task installation. Common I/O variables that

represent outputs are always 0. Common I/O variables that
represent inputs are alwaysat their actual state.

After a STOP ALL condition or a powerfailure followed by a
system-restart, common memory variables that are defined as
volatile memory in the configuration for the rack are 0. Common
memory variables that are defined as non-volatile memory in the
configuration retain their last value. Commonvariables that

representI/O locations are at 0 for outputs and at their actual
state for inputs. Note that the UDC dual port memoryis treated

like I/O variables. See the AutoMax Programming Executive
instruction manual for more information on the STOP ALL and
system-restart conditions.

Pre-defined Common MemoryVariables

The following common memory variables are pre-defined for every
rack. However, they do not appear on the form for common memory

variables. You must enter these variable names on the form if you
want to use these variables in application tasks.

AUTORUNSTATUS@ - True when AUTO RUNis enabled for the

rack;false if AUTO RUNis not enabled

FORCINGSTATUS@ - True when a variable is forced in the rack;

false when novariables are forced in the

rack

BATTERYSTATUSO@ - True when the on-board battery of the
Processor module or Common Memory

modulein slot 0 is OK
BATTERYST,ATUS41 @ . won WH WR WR WH WOW OW WO

BATTERYST,ATUS2@ . won WH WR WR WH WOW OW WO

BATTERYST,ATUS3@ . “wou nw HH HW HH OW WW

BATTERYST,ATUS.4.@ . won WH WR WR WH WOW OW WO

h
O
N
M
—

2-7

3.0

3.1

LADDER LOGIC LANGUAGE
DESCRIPTION
LadderLogic language,also called PC language, permits the
AutoMax distributed control system to perform sequential logic

operationsin real time using industry standard ladder diagrams. The
ladder diagram structure is used to define the logic process and

establish the sequencesand types of operations to be performed.

Along with the typical normally open and closed contact and coil

operations, AutoMax ladderlogic also provides functions for

software timers, counters, shift registers, event coils, and remark
sequences,as well as functions for detecting transitions (rising or
falling edge) onbits.

The multi-tasking capability of the AutoMax distributed control

system allowsit to run multiple ladder logic tasks, each with its own
scan period. In cases where all sequences do not require evaluation

at the samerate, you can create two or moretasks that execute at

different scan intervals. Multi-tasking conserves processing capacity,
since all ladder sequences need not be evaluated at a high rate to
satisfy the high scan rate requirements of a few key ladder
sequences.

An important feature of AutoMax ladderlogicis its use of symbolic,
or variable, namesin place of physical addresses.This allows you to

assign unique namesup to 14 characters longto all internal points,

input and outputpoints, timers, counters, and shift registers. In

addition, each element in a sequence can have a 40-character

description. The real-time display allows you to view the description

of any elementin a sequence.

AutoMax Ladder Logic does not support arithmetic operations.
These functions are available in either the BASIC or the Control
Block languages. For additional information, see the AutoMax
Enhanced BASIC LanguageInstruction Manual J-3675 and AutoMax

Control Block LanguageInstruction Manual J-3676.

Note that Ladder Logic tasks can run on AutoMax Processorsonly.If
you are using Universal Drive Controller modulesfor drive control,

you cannotrun LadderLogic tasks on a UDC module. See J-3676
for more information.

Notethatthis instruction manual describes the ladderlogic
language only. For more information aboutthe the editor used to

create and edit ladder logic tasks in the AutoMax Executive
Software, refer to the ReSource AutoMax Programming Software
instruction manual.

Application Program Structures

A ladderlogic task is a symbolic representation of a specific logic
process.It consists of one or more ladder sequences.Thetotal

numberof sequencesallowedis limited only by the amount of
memory available and the complexity of the sequences. Ladder

logic operations are described in chapter4.

3-1

A standard ladder logic sequenceconsists of a 6-row by 9-column
matrix of elements, plus a coil in the tenth column. Software timers,

counters, and shift registers consist of a 6-by-6 matrix of elements
with the coil in the tenth column. Sequences are numbered between

1 and 32767.

Asin relay logic, series operations represent logical AND operations

and parallel branches represent logical OR operations. Figure 3.1
showsthe basic sequencestructure as it would appear on the
screen.

14_char 14_char 14_char
bitname bitname bitname

II al ()
14_char
bitname

iE
14_char
bitname

}[—

Figure 3.1 - Ladder SequenceStructure

The AutoMax Executive software will include the following in the

printout of a ladder program listing. Note that you can also print out
a cross reference of the program. See J-3684 for more information
about crossreference.

1. All sequencesas entered

2. The 40-character description for each element (as fourlines of
10 characters)

3. Cross-reference data for each coil beneath the coil symbol and
description

4. The type of variable (commonin uppercasetype andlocalin
lowercase type) used for each contact

5. The numberof the sequence that defines each variable.

See Figure 3.2 for a sample printout of one sequence.

SEQUENCE1000

40-Character

LINE RUN LINE STOP elementdescription LOCAL

OPERATOR OPERATOR LINE RUN
BENCH 16 BENCH 16 STATUS

WIRE 1145 WIRE 1146 COIL

LINE LINE . :_ — Local variable line
RUN_IN STOP_IN (in lower case) —— status

ll I/E
Input Input —jJ[-

LINERi » Cross-reference 1060 1070LINE RUN 7
STATUS Addedby the sys- gata showing se- _— _U d II
COIL tem to Identify quenceswhere 1040

line these as inputs samecoil occurs — lu —
status 1090
1000 ««———— Sequence numberwherevariable

is defined (same sequenceinthis
case)

3.2

3.3

Figure 3.2 - Sample Printout of Task Listing

Variable Namesin Ladder Logic

All ladder logic operations must be assigned a symbolic, or variable,
name. Thetype of variable used dependsonthe type of operation

selected. Contacts and coils must be boolean (bit) variables, and all
other operations must be represented byinteger variables. Names
must begin with a letter and can contain up to 14 alphanumeric

characters which are entered as twolines of seven characters.
Typing the underscore “_”on thefirst line inserts an underscore and
movesthe cursor to the secondline, allowing you to divide the
variable nameinto recognizable segments. The parentheses,“(“
and ”)”, are used to specify arrays. See the examples belowforvalid

variable names:

OUTPUT_ OUTPUT_
ARRAY (10)

Variable Types in Ladder Logic

Each symbolic, or variable, name must be defined as oneof two

types: local to the task or commonto all Processorsin a rack. The
AutoMax editorwill prompt youfor this information.

You should define a variable as localif it does not represent a

physical I/O point andit is not referenced by any other application
task. Local variables are typically used as temporary storage for

coils or for TIMER or COUNTERpreset nameswhich are not

referenced outside of the task.

You should define a variable as commonif it is a physical I/O point
or it is referenced by another application task within the system. A

contact name which hasnot also been used as a coil nameis
assumed to be common.All variables which are defined as common

3-3

must also be defined in the configuration for the rack in which the
ladderlogic task will run. If you are using AutoMax Version 2.1 or

earlier, see the Configuration Task Instruction Manual (J-3649) for
moreinformation on the configuration task.

By specifying a subscript with an array name, you can use boolean
array elements as contacts and coils. Arrays can be
one-dimensionalonly. The variable nameisstill limited to 14
characters, including the parentheses for enclosing the subscript

value. When an array nameis specified, it is assumed to be
common, and it must therefore be defined in the configuration task
for the rack in which the ladderlogic task will run. See the Enhanced

BASIC LanguageInstruction Manual, J-3675, for more information
on arrays. Seefigure 3.3.

OUTPUT_ SWITCH
ARAY(6) (10)

II ()

Figure 3.3 - Arrays Used As Contact and Coil

4.0

4.1

4.1.1

LADDER LOGIC LANGUAGE
OPERATIONS
You will probably recognize someoperations,like the normally open
contact and coil, as standard ladder diagram operations commonly
used in programmable controller applications. Other operations

supported by AutoMax ladder logic, such as the upwardtransition,

are typically handled with multiple operations in one or more

additional sequencesin most programmable controllers.

Contacts

AutoMax ladderlogic supports four input operations specifically

designed to operate on bits of data in the ladder logic data buffer.
Eachbit is associated with oneof the following: digital input/output;
common memory;local memory; or the output of a counter, timer,
shift register, or eventcoil.

Normally Open Contact

The normally open contact operation reads the state of the specified
bit variable and, depending on the bit value, generatesa logically
true or logically false condition.

If the bit is ON (1), the logical sense of the operation is TRUE. If the
bit is OFF (0), the logical sense is FALSE.

This operation can be located anywhere within the ladder diagram
except in the tenth elementposition (the right-mostin the display).

This position is reserved for output operations. See figure 4.1.

14_char
bitname

—ii

4.1.2

Figure 4.1 - Normally Open Contact

Normally Closed Contact

The normally closed contact operation reads the state of the
specified bit variable and, depending onthebit value, generates a
logically true or logically false condition.

If the bit is OFF (0), the logical sense of the operation is TRUE.If the
bit is ON (1), the logical sense of the operation is FALSE.

This operation can be located anywherewithin the ladder diagram

exceptin the tenth element position, which is reserved for output

operations. See figure 4.2.

AA

14_char
bitname

al

4.1.3

Figure 4.2 - Normally Closed Contact

Upward Transition Contact

The upward transition contact operation causes the ladderlogic to
determineif the bit has changed from the OFFto the ONstate
during the last scan. Depending upon whethera transition occurs,
the ladder logic generates a logically true or logically false condition.

If the bit was turned ON(a0 to 1 transition), the logical sense of the

operation is TRUE.If the bit is OFF (0) orstill ON (1), i-e., there has
been notransition since the last scan, the logical sense of the
operation is FALSE.

This operation can be located anywherewithin the ladder diagram

exceptin the tenth element position, which is reserved for output

operations.

14_char
bitname

JU[

4.1.4

Figure 4.3 - Upward Transition Contact

Downward Transition Contact

The downward transition contact operation causes the ladderlogic
to determineif the bit has changed from the ON to OFFstate during
the last scan. Depending upon whethera transition occurs, the

ladder logic generates a logically true or logically false condition.

If the bit was turned OFF(a 1 to 0 transition), the logical sense of the

operation is TRUE.if the bit is ON (1) orstill OFF (0), i.e., there has
been notransition since the last scan, the logical sense of the
operation is FALSE.

This operation can be located anywherewithin the ladder diagram

exceptin the tenth element position, which is reserved for output

operations. Seefigure 4.4.

14char
bitname

|D[

4-2

Figure 4.4 - Downward Transition Contact

4.2

4.2.1

Output (Coil) Operations

Ladderlogic language supports the following six output,orcoil,
operations: COIL, ON-DELAY TIMER, OFF-DELAY TIMER,
COUNTER, SHIFT REGISTER, and SET EVENT. A variable name
can only be used onceasa coil in a ladder logic task. See chapter 6
for details concerningtheinitial memory states for these functions.

Coil

The coil operation writes the state of the rung to the specified bit

variable. If the rung is logically true (ON), a 1 is stored at the
specified bit. if the rung is logically false (OFF), a 0 is stored at the
specified bit.

This operation must be located in the tenth elementposition, which

is reserved for output operations. Only one coil per sequenceis

permitted. See figure 4.5.

14char
bitname

()

4.2.2

Figure 4.5 - Coil Operation

Timer

Ladderlogic supports two types of software timers: On-Delay and

Off-Delay. Each timer consists of enabling logic in any combination
of contacts, lines, and spacesin a 6 row by 6 column matrix with the
timer coil in column 10. Only one coil per sequenceis permitted.

Software timers require three additional parameters: Preset Name,
Preset Value, and Current Value Name. The Preset Name(PN)is the
nameofthe variable that contains the preset value. This variable can

be LOCALto the task or COMMONto the system.If PN was defined
as COMMON, it can later be modified under software control by a
BASIC or Control Block program.

The Preset Value (PV) is the numberof 0.1 second increments of

time thatis initially stored in PN. The PVis limited to 32767 intervals

of 0.1 second.In the event of a STOP ALL or powercycle, PV will be
loaded and Current Value Namewill be set to 0 unless Current Value
Namehas been defined as a non-volatile COMMON memory |
variable.

The Current Value Name (CN)is the nameof the variable that

contains the current value of the timer. This value is the elapsed

value, which is determined by the enable logic state (on oroff). The

variable can be LOCALto the task or COMMONtothesystem.If
Current Value Nameis defined as a non-volatile COMMON memory
variable, its value will be retained through a STOP_ALLor power
cycle. Refer to Figure 4.6.

4-3

14_char 14char
bitname bitname

IN OUT (ON) IN OUT (OFF)

TIMER TIMER

PN: preset name
PV: preset value

CN: current value
name

CV: current value

PN: preset name
PV: preset value

CN: current value
name

CV: current value

Figure 4.6 - Timer Output Blocks

The On-Delay timer provides a logically true output wheneverthe
input is true and the presettime interval has elapsed. Whenever the

inputis false, the elapsed countis initialized to zero. When the input

is true, the elapsed time is incremented at 0.1 secondintervals.

Whenthe elapsed count reachesthe preset value and the inputis
true, the output is also true. See figure 4.7.

Time
| Delay |

Logic Enable | |

| |
| |
|

Coil Output —_—_>—_ L_

| |
| |
|

Current Value |

On-Delay Timer

4-4

Figure 4.7 - Operation of On-Delay Timer

The Off-Delay timer provides a logically false output wheneverthe
input is false and the preset time interval has elapsed. Whenever the

inputis true, the elapsed countisinitialized with the preset count.

Whentheinputis false, the elapsed count is decremented towards
zero at 0.1 secondintervals. Wheneverthe elapsed countis zero

andthe inputis false, the outputis also false. See figure 4.8.

I |
Logic Enable |

Coil Output _| | =

| |
| |

Current Value Er

Off-Delay Timer

4.2.3

Figure 4.8 - Operation of Off-Delay Timer

Counter

The software counter is an up-down counter capable of counting
over the range of +/- 32767. The counter consists of a counter block
and the logic that drivesit. The logic can be any combination of
contacts,lines, and spacesin a 6-row by 6-column matrix. The
counter block contains three inputs (UR DOWN,and RESET) that
must always terminatein thefirst, third, andfifth rungs in the ladder
diagram.

Counters require three additional parameters: Preset Name, Preset

Value, and Current Value Name. The Preset Name(PN)is the name
of the variable that contains the desired count value. This variable
can belocal to the task or commonto the system. If PN was defined

as common,it can be modified under software control by the BASIC
or control block program.

The Preset Value (PV) is the count value thatis initially stored in PN.

In the event of a STOP ALL or powercycle, PV will be loaded and
Current Value Namewill be set to 0 unless Current Value Name has
been defined as a non-volatile COMMON memory variable. i

The Current Value Name (CN)is the nameof the variable that
contains the current elapsed value of the counter. This variable can

be local to the task or commonto the system. If Current Value Name

is defined as a non-volatile COMMON memory variable,its value is
retained through a STOP_ALLor powercycle. The elapsed value is
determined bythe state (on or off) of the UR DOWN, and RESET

logic state. See Figure 4.9.

4-5

14char
bitname

()

 —, UP OUT
COUNTER

PN: preset name
PV: preset value

— DOWN

CN: current value
name

CV: current value

— RESET

4-6

4.2.4

Figure 4.9 - Counter

The counter providesa logically true output whenever the elapsed
counts are greater than or equal to the preset count. Whenever a

positive transition (input changes from 0 to 1) is received at the UP

or DOWNinput,the internal elapsed countwill be incremented or

decremented accordingly.If a transition is received at both inputs

during the same scan, no changewill take place.

Wheneverthe elapsed countis greater than or equal to the preset

count, the output coil will be true. The elapsed count will changein
responseto inputs up to a maximum of +/- 32767, regardless of the
value of the preset count. Whenever RESETis high, the elapsed
countwill be reset to zero. The RESETinput overridesall other

inputs.

Shift Register

The softwareshift register has a variable length up to 16 bits and
shifts to the right. The shift register consists of a shift register block
and the logic that drivesit. The logic can be any combination of
contacts,lines, and spacesin a 6-row by 6-column matrix. The shift
register block contains three inputs (DATA, SHIFT, and RESET) that
mustalways terminatein thefirst, third, andfifth rungs in the ladder
diagram.

Shift registers require two additional parameters: Shift Register
Length and Current Value Name.

The Shift Register Length (LEN)is the length (</=16 bits) of the shift
register. This parameter must be entered as an integer constant

rather than a variable name.

The Current Value Name (CN) contains the nameofthe variable that
contains the current elapsed value of the shift register. In the event

of a STOPALLor power cycle, Current Value Namewill be set to 0
unless it has been defined as a non-volatile COMMON memory

variable. In this case,it will retain its current value. This variable can
be local to the task or commonto the system. The elapsed valueis
determined by the state (on oroff) of the DATA, SHIFT, and RESET

logic. See Figure 4.10.

14_char
bitname

()

 —— DATA OUT
SHIFT

LEN: register length (<16 bits)

— SHIFT

CN: current value
name

CV: current value

—— RESET

4.2.5

Figure 4.10 - Shift Register

Whenevera positive transition occurs (change from 0 to 1) at the
SHIFTinput, the data present on the DATAinputwill be shifted into
the left-mostbit in the shift register. In addition, all of the bits in the
shift register will shift one position to the right. The state of the
output coil is always equal to the state of the right-most bit in the

shift register. The RESETinput will reset the entire shift register. The
RESETinput overridesall other inputs.

Event Coil

A software Event Coil provides synchronization with BASIC and
Control Block tasks in the samerack. The software Event consists of
a coil and the logic that drivesit. The logic that drives it can be any
combination of contacts, lines and spacesin a 6-row by 6-column

matrix. The Event Coil is valid only in column 10, and only one Event
Coil per statementis permitted.

The software Event requires one additional parameter: the Event
Name. The Event Name(EN) is the nameof the software event. The
Event is set by an upward transition of the SET input. This results in

a logically TRUE output. See figure 4.11.

14char
bitname

— SET OUT ()
EVENT

EN: event_name

Figure 4.11 - Event Coil

4-7

4.3

Whenusing the software event you must insure that another task

respondsto any EVENTs whenthey are set. Otherwise, once the
system counts the maximum of 32767 events, a STOP ALL/CLEAR

will occur.

REMARK Sequence

Ladder Logic supports a REMARK sequenceto provide additional

documentation within the ladder program. Upto 16 lines of text may

be entered for each REMARK sequence.

A REMARKsequenceconsists of a sequence numberand a

REMARKkeyname. The keyname may contain up to 14 characters

and must be uniquewithin the task. Refer to Figure 4.12.

REMARK: Keyname

4-8

Figure 4.12 - REMARK Sequence

The text associated with the keynameis not containedin the ladder
logic programitself but resides in a separatefile that you create with

the AutoMax text editor. Remarks are storedin the file as follows:

! keyname

They can befollowed by 0-16 lines of ASCII text. Refer to the
ReSource AutoMax Programming Instruction Manual (J-3684 or
J-3750) for more information on creating REMARK sequences.

5.0 TASK EXECUTION
Whena ladderlogic task is turned ON, theinitial state of all volatile

coil variables will be false (OFF or 0) and notransitions are detected
as a result of turning the task ON. Commoncoil names, which are
defined in the configuration task for the chassis as non-volatile, or

NVMEMDEFvariables,are left unchanged.

In order to be detected, a transition must occur while the taskis

running. This also applies to transitions which might result from a
variable being forced. Consequently,if a variable is forced to a
particular state while the task is turned off, a transition will not be
detected whenthetaskis then turned on. If, on the other hand, a

variable is forced while the task is running and the forced state
causesa transition,this transition will be detected by the task.

Transition contacts that reference external inputs will detect the

transition in the next scan that runsafter the transition occurs.

Transition contacts that reference a coil in the task will detect the

transition in the same scan in which the coil changedstate if they
are located in sequenceafter the coil. Otherwise they will detect the
transition in the next scan.

WARNING

DEPENDING ON THE APPLICATION, TURNING ON A TASK MAY CAUSE
OUTPUTS TO CHANGE STATE. THIS MAY CAUSE UNEXPECTED MACHINE
MOVEMENT. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN
BODILY INJURY.
5.1 Buffering

Each ladderlogic task will read all of its COMMONvariables and
save them in a local buffer before each scan begins. This insures
that inputs will remain in a single state for the duration of the scan.

After each sequenceis evaluated, its coil is updated in the local
buffer. Subsequent references to that coil will obtain the current

state. At the end of each scan,the outputs are written from the local

buffer to their actual physical location.

5-1

6.0

6.2

STOPPING A TASK
CONTAINING COILS WITH
INTERNAL MEMORY
Timers, counters, and shift registers all have internal memory
associated with them. The memory will be in one of two possible

states after a ladder logic task has been stopped.

Task Stopped with STOP Command

If the task was stoppedby the operator through a STOP command,
the internal memory for timers, counters, or shift registersis left
unchangedfrom its state at the time the task was stopped.

Therefore,if a timer was timing at the time the task was stopped, it

will continue from whereit left off when the task is restarted.
Likewise, the value of any counterat the time the task was stopped

is retained and counting continues from that value. The value of any
shift register is also retained, and shifting continues with that
accumulated data. Note that the Past state for inputs that are

transition detectedis left in the state the inputs were in when the

task was stopped.

Task Stopped Through PowerLossorwith
STOP ALL Command

If all tasks were stopped either through powerloss or with a STOP
ALL command,the internal memory for timers, counters, or shift

registers is usually set to the samestate it was in when the task was
initially downloaded to the Processor module. See below for specific
details on each operation.

ON-DELAY TIMER

Current value is set to the RESETstate,i.e., the timer is ready to
begin timing when the INPUT becomes TRUE,unless Current Value

Name has beendefined as a non-volatile COMMON memory |
variable. In this case, the current valueis retained.

OFF-DELAY TIMER

Currentvalue is set to the “timed out”state,i.e., the timer has
already timed and expired unless the Current Value Name has been
defined as a non-volatile COMMON memory variable.In this case,
the current value is retained. A TRUE state on the INPUTis required

to RESETthetimer, after which a FALSEstate on the INPUTwill
causethe timer to begin timing.

COUNTER

Current value is set to zero unless the Current Value Name has been

defined as a non-volatile COMMON memory variable. In this case,

the current value is retained. The past states of the UP and DOWN

inputs are set FALSE.

6-1

6-2

SHIFT REGISTER

Current value is set to zero unless the Current Value Name has been

defined as a non-volatile COMMON memory variable. In this case,

the current value is retained. The past state of the SHIFT input is set

FALSE.

EVENT COIL

The paststate of the input is set FALSE to recognizethefirst rising
edge.

7.0
MEMORY USAGE
ESTIMATES
The execution time for a ladder logic task can be estimated using
the following timing estimates. After the total execution time is

computed,divide by the scan time to obtain an estimate of the CPU
usagefor the task. A maximum of 2047 different symbols may be

usedin a single task.

Execution Time and Memory Usage Estimates

EXECUTION TIME AND

6010 7010 Memory

Ladder Logic Operation Execution Execution Usage

Time inusec.| Time in sec. in Bytes

Normally Open Contact 1.5 0.5 6

Normally Closed Contact 1.5 0.5 6

Transition Contacts
AND 3.0 1.0 10
OR 3.5 1.2 12

Coils 26.0 7.1 8

Timers 50.0 14.7 24

Counters 50.0 14.0 24

Shift Registers 41.0 11.9 24

Events

Event Set 272.0 152.0

Event Not Set 18.0 9.6 24

Remark 11.0 3.5 24

Variables 8+ # of
characters in name

System Overhead fixed 314 100 3000

System Overhead- variable 18c + Of 6c + 3f c/n* 10+
10 per sequence

Key:

c = numberof commenvariables

f = numberof forced variables
n = packing density, a function of how the common booleansare stored in

memory. The value can range from 1 (worst case) to 16 (ideal case).

Use a value of 8 as an estimate.

7-1

Appendix A

Converting a DCS 5000 Ladder Logic Task
to the Current Version of the AutoMax

Executive Software
You caneasily convert any version 4 DCS 5000 Ladder Logic
application task to run in an AutoMax processor. The only

substantial difference between DCS 5000 and AutoMax Ladder
Logic that is visible to the useris the Current Value Name (CN)

parameter added in On-Delay and Off-Delay Timers, the Counter,
andthe Shift Register.

Programs that have been converted to AutoMax cannot be
converted back to DCS 5000 format unless they are re-entered in
their entirety.

The Ladder Logic/PC Editor in AutoMax will automatically convert
your DCS 5000 task to AutoMax whenyou usethe Editor to open

the task, and then save the task again. You will see the message
“Converting DCS 5000 to AutoMax’”flash briefly on the screen when
you opensucha task. The Editor will simply add the Current Value
parameterto the On-Delay, Off-Delay, Counter, and Shift Register
operationsin the task.It will assign variable names to Current Value

Namesin one of two methods. Method 1 is used when converting a
DCS 5000 LadderLogic task to AutoMax Version 1. Method 2 is
used when converting a DCS 5000 Ladder Logic task to AutoMax
Version 2.0 or AutoMax Version 3.0.

Method1

1. The Editor will search the task for any of the following variable names
(asterisks denote any character):

2. Thefirst variable not foundin the task will be used as the baseforall Current

Value variable namesthe Editor adds.

3. The Editor will append a number, beginning with 1 and increasing by 1 each

time, after the underscore found at the end of the variable (note that all
variableslisted end with an underscore).

Whenyou openthe task again, the Current Value Nameswill have
been added. If you want any Current Value Nameto represent a
common(as opposed to a local), you must revise your configuration

task for the rack in which the task will run to include these variables.

Method 2

AutoMax Version 1.0 B and later uses the following method to
assign variable names to Current Value Names.

1. The Editor will create the Current Value Namebyprefixing the Coil name for

the element with “CV_”.

A-1

R
E
1
8
5
7
L
C

Pr
in

te
d

in
U.

S.
A.

RELIANCE CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will affect. Include markeups from

the documentor attach additional pages if necessary.)

Whatwill this improvement suggestion provide?

Originator: City: State: ZIP:

Company: Phone: ()

Address: Date:

Technical Writing Internal Use:

Writer:

Follow-Up Action:

Date:

Thank you for your comments...

PEtANCer
ELECTRICS!

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA

Tel: (800) 241-2886 or (440) 646-3599

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

1pe/Middl i kwell i du in 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640

Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong,Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication J-3677-4 - May 1994 Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in U.S.A.

