AutoMax
Ladder Language Editor

Instruction Manual J2-3093-3

RELIANCE'.
ELECTRICH[]

The information in this user’s manual is subject to change without notice.

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OF THIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE, OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALS IN THEIR ENTIRETY BEFORE PROCEEDING. FAILURE
TO OBSERVE THIS PRECAUTION COULD RESULT IN SEVERE BODILY INJURY
OR LOSS OF LIFE.

WARNING

THE USER MUST PROVIDE AN EXTERNAL, HARDWIRED EMERGENCY STOP
CIRCUIT OUTSIDE THE CONTROLLER CIRCUITRY. THIS CIRCUIT MUST
DISABLE THE SYSTEM IN CASE OF IMPROPER OPERATION. UNCONTROLLED
MACHINE OPERATION MAY RESULT IF THIS PROCEDURE IS NOT FOLLOWED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

Ethernet™ is a trademark of Xerox Corporation.

Microsoft™, Windows ™, Windows 95™, 0S/2™, MS-DOS™, and WordPad ™ are
trademarks of Microsoft.

Multibus™ is a trademark of Intel.

AutoMate, AutoMax, ReSource, R-Net, and Shark are trademarks of Rockwell Automation.

Reliance Electric is a trademark of Rockwell Automation, a core business of Rockwell
International Corporation.

Preface

AutoMax Ladder Editor Feature Overview

The AutoMax Ladder Editor ships as part of the AutoMax
Programming Executive. It can be run from within the Executive or
as a stand-alone application for offline programming only. The Editor
provides these features to help you create your ladder programs:

More easily view and work with rungs in the same program or in
different programs.

Because the Editor is based on Microsoft Windows 95™, you can:

® Use familiar menu commands and toolbar icons for typical
Windows features like restore, maximize, open, save, cut, copy,
and more

e Display multiple rungs at the same time

e Display rungs from different parts of the program at the same
time

® Display rungs from more than one program at the same time

® Use pop-up menus to access frequently used commands

More easily edit ladder programs.

Because of the drag-and-drop functionality and property sheets for
each program element you can:

e Cut, copy, paste individual instructions and rungs or groups of
instructions and rungs

® Move rungs by selecting them and dragging them with the
mouse

® Create a “work-in-progress program” by building rungs without
variable names or coils when you end an editing session

® [nsert instructions and branches, or change an instruction type or
variable name without any re-typing

® Reduce the amount of typing by importing the variable
descriptions for global variables from the Variable Configurator.
Also, while entering variable names, you can choose from a list of
smart-matched names

® [nsert new rungs without renumbering existing rungs

® Add rung descriptions which become part of the rung
Create programs using an enhanced set of ladder instructions.

The AutoMax Ladder language has been enhanced to include
support for:

® An expanded instruction set based on the IEC-1131-3 standard
® Variable names of up to 16 characters

e Multiple coils per rung

® More instructions per rung and more parallel branches

® Easier access to bits within integers and arrays, for example:
INPUT_VAR.31 or array_var[index].bit_num

More easily edit online programs.
When editing an online program you can:

e |dentify inserted, deleted, or modified rungs

® View the original program while you are editing an online version
of the same program

® Monitor and modify timer and counter preset values

e Test online edits before permanently downloading them to the
Processor

e Set, force, and unforce variables from within the Editor
Where to Find More Information

This instruction manual describes the AutoMax Enhanced Ladder
Editor. For information about the Ladder language, refer to
instruction manual J2-3094. The information in both instruction
manuals can also be accessed in the AutoMax Ladder Editor and
Enhanced Ladder Language help file (MAXED.HLP). The help file
contains additional information not found in either instruction
manual.

For more information about the AutoMax Programming Executive,
refer to J2-3089.

The thick black bar shown at the right-hand margin of this page
will be used throughout this instruction manual to signify new or
revised text or figures.

1.0

2.0

3.0

Table of Contents

Getting Familiar with the Editorco0ia,
.1 Overview of the AutoMax Ladder Editor Window
Opening Programst e
Closing Programs ;s scssssssmmmasssssssmpnosssssssmmans
Saving Programs
Saving Programs Automatically As YouWork
Displaying a Program in Multiple Windows
Editing Different Parts of the Same Program Using
SplItWINAOWS . ..o
1.8 Editing Multiple Programso i
1.9 Displaying/Hiding Revision Marks While Editing

Programs Offline i
1.10 About Program Properties i,
1.11 About Program Execution,

1.11.1 Specifying a Scan Time to Control Program Execution . .

1.11.2 Specifying a Hardware Event to Control

Program: Execution ::ssssmsuurssvsssmosnssssnnmemars
1.11.3 Specifying a Software Event to Control Program
Execution «s:auvesssisssmmmonssisssmmmaiisisaimaisns

1.12 Running and Stopping Ladder Programs
1.13 Exiting the Ladder Editorot

.._._._._._.
Noukrwiv

Editing Programsiiiiiiiiii i
2.1 Starting a/BUNG ;s s s sree v oo momoss 55550 Emars 165688803

2.1.1 Defining the Horizontal and Vertical
Grid Limits Per Rung ::cssmovvssissmmmasesssssmmeass

2.1.2 Turningthe GridOnand Off
2.2 Selecting RUNGS «ssmmsovesssssmpmosssssssmmmasssssasmmass
2.3 Entering Rung Descriptions,
2.4 Inserting InstructionsintoaRung
2.5 Connecting Instructions (Drawing Wires)

2.6 Connecting Multiple Instructions by Using the ENO
Output Bit. ...

2.7 Selecting InStructions: « uv:ovsssmmmessssronmansssss pemas
2.8 About Instruction Properties i .
2.9 Changing an InstructionType ...,

2.10 Assigning Variables and Constants to Ladder Instruction
Parameters: « s« s ss s wvvssass amm os e s s ans ommans 5 565 o 0o s

2.11 Entering Variable Descriptions o. ..
2.12 Using Variable Smart-Matching
2.13 Selecting Variable Namesot
2.14 Changing a Variable'sDataType oot
2.15 Changing a Variable’'s Scopet

Printing Programs covuve i vson v omme s vensonwema s s s s s s wwns

3.1 What s Included in a Printed Copy of a Program
3.2 Setting PrintOptionso
3.3 DefiningthePageSetup ...t
3.4 How a Rung Is Printed To Fiton a Single Page

4.0

5.0

3.5 Inserting and Deleting Page Breaks
3.6 PrintingaRangeofRungs i
3.7 Displaying and Printing Coils as Right-dustified
3.8 Printing Multiple Copies of Programs

Verifying Programscociiiiiiiiiiiiiiii s
4.1 Creating a Verify ErrorLog File
4.2 Automatically Checking the Variable Configurator Database
While Verifyinga Program
4.3 Specifying Whether To Include Warning Messages When
Verifying Programs

4.4 Resolving VerifyErrors i

Editing Programs Onlinecooo e
5.1 About the States of Online Programs
5.2 Monitoring an Online Ladder Program
5.3 Pausingthe EQItOr «co:s«isnsmmunsvssssmmmarssssnsmamanyss
5.4 AboutPowerFlow
5.5 Monitoring Data in an Online Program
5.6 Accepting Changes Made to Online Programs
5.7 Downloading Changes Made to an Online Program

(Commit Online Changes)
5.8 Testing Programs (TestMode)cooiietn.

5.8.1 Committing an Online Program in Test Mode
(Commit ChangesinTestMode)

5.8.2 Removing an Online Program from Test Mode
5.8.3 Canceling All Changes Made to an Online Program
5.9 About How Changes Made to Online Programs Are Verified . ..
5.10 Viewing an Online Program as It Looked before It Was Edited .
5.11 Capturing the State of Logic in an Online Program

5.11.1 Capturing the State of Logic Based on a Coil
Becoming True ...

5.11.2 Capturing the State of Logic Based on a Coil
Becoming False i

5.11.3 Capturing the State of Logic Based on a Rung Error
5.11.4 Waiting for Triggers While Continuing To Edit
5.11.5Re-Activatinga Trigger
511.6ClearingaTrigger
5.12 Setting and Forcing Variables in Ladder Programs
5.12.1Setting Variables
5.122Forcing Variables i
5.12.3Unforcing Variableso i
5.12.4 About the Expanded Set/Force/Unforce Dialog Box
5.12.5Viewing the Total Number of Forced Variables
5.12.6 Viewing a List of Set or Forced Variables
5.12.7 Unforcing an Entire ForcePage
5.12.8 Testing If Variables in the Rack Are Forced
5.13 Viewing and Clearing Run-Time Errors

Appendices

Appendix A

Toolbars, Palettes, and the Status Bar

Appendix B

Keyboard ShorteUls « s ssvs consmmmarss s xop mmmar e s 565 w4

Appendix C

Using the Pre-Defined (Reserved) Ladder Language Variables

Appendix D

Online Editing Memory Limits oo,

Appendix E

Rung Execution Order s s s e cossmmmanssssoemmanussssesmms

Appendix F
Converting Ladder Programs Created Using an Older Version

OF AUOMEX & v 550w s s 55 mmm s oy 6 5o 5 mmem 1605 58 66T 505 5 55 § i s

Appendix G

GlOSSAlY :ssummonssssormmos e 50 ML oor s o E o EREEa RS 5555 E s

1.0 Getting Familiar with

1.1

Ladder Language Toolbar

File Edit Wiew

=) Task1.pc - futoMax Ladder Editor

the Editor

This section describes some basic information to help you become
familiar with the Editor.

Overview of the AutoMax Ladder
Editor Window

Standard Toolbar Instruction Palette

Editor Window

Inzert Toolz Online window | Help

Menu Bar Program Windows

s@|a|| [|e] o] =P %lo(d]zld] v el
ar|@f2 % [+ e[| F | 4 e O

55_UDC_PR

S5A_CMLTEST

S58_SPOTESST

S5A_PC_PM

SHA_CML

55A_SPOTEST

538 _PC_RUNPERM

’jl] 1] L] L

S3A_CMLTEST
1 /1

E DnlinePeac Wi =1 Y

ForHelp, press F1 1

[4

Minimized Program Status Bar

Rung Status Area

e Ladder Language Toolbar: Provides access to the individual
ladder instruction palette

e Standard Toolbar: Provides shortcuts to common commands by
clicking on a button

e Editor Window: Identifies the name of the currently active
program and provides access to the application window controls

e Instruction Palette: Lets you drag and drop instructions into
your program

e Menu Bar: Provides access to the available Editor commands,
many of which can be accessed via a standard toolbar button or
keyboard characters

1-1

1.2

® Program Windows: Presents the open program(s). The name of
the program is listed in each window

® Rung Status Area: Displays rung numbers, revision marks, set
triggers, and indicates active versus non-active powerflow

o Minimized Program: Can help organize many open programs

e Status Bar: Displays information about the program objects you
have selected, the state of the program in the active window, and
helpful messages

Refer to Appendix A for more information about the toolbars,
instruction palettes, and the status bar.

Opening Programs

Opening a program is the first step in editing it. Before you can open
a program, you must have added it to the rack using the Task
Manager application.

You can open a program from the Task Manager application or from
the AutoMax Ladder Editor.

To open a program from within the Task Manager application

® From the Task Manager application, select a task and choose
Edit from the Task menu.

To open a program from within the Editor

Step 1.

Step 2.

Step 3.

Step 4.

Do one of the following:

® Click on

or

e From the Ladder Editor’s File menu, choose Open
The Open dialog box is displayed.

Choose the location of the file that you want to open. The
default drive and directory is the drive and directory from
which a program was last opened.

To change this:

Do this:

The drive and
directory in which to
search

Click in the Look in list box. From
here choose the drive and directory
that contains the program you want to
open.

The directory in which
to search

Click on a folder or on a file in the list
of files and folders contained within a
directory.

From the list of file names, select the program you want
to open. The default file type is ladder programs (*.pc).
You can open only .pc programs using the Ladder Editor.

Open the file by clicking OK.

If the ladder program was created using an older version
ladder editor, the Editor first prompts you to convert the

1.3

1.4

program. To convert the program, choose Yes. For more
information, see Appendix F.
You can have at most 15 unique offline programs opened at one
time.

Closing Programs

Close the active program with the Close command. The Editor stays
active and any other open programs stay open.

The Editor prompts you to save any changes to open programs
before closing.

To close a ladder program

Step 1. From the File menu or Program Control Menu, choose
Close.

Step 2. If you have made changes to the program since you last
saved it, choose one of the following buttons in the
message box that asks if you want to save the changes:

To: Click:
keep the changes Yes
not save the changes No

keep the program open Cancel
and cancel the changes

Saving Programs

Save changes to the active, offline program by using the Save
command. The Editor stays active with the same program open after
saving the changes.

To save a ladder program

® (Click on

or

® From the File menu, choose Save

The Editor saves global and local variables and their descriptions to
the program symbol table.

Tip

Any offline revision marks present in the program disappear once
you save a program.

Tip

To save changes made to an online program, use the Accept or

Commit Test Mode Changes commands. For more information, see
Chapter 5.0.

1-3

1.5

1.6

Saving Programs Automatically As
You Work

To make sure that you do not lose work, you can use the Automatic
Save Every feature to save your offline ladder programs at a
specified interval —for example, every ten minutes. Specify whether
you want your programs to be saved automatically and the time
interval to use within the General Options tab.

Files that are saved automatically are stored in the same directory
as the original ladder program and under the same name. However,
the file extension for an automatically saved file is .ASV.

To automatically save programs as you work
Step 1. From the Tools menu, choose Options.
Step 2. On the General tab, choose Automatic Save Every.

Step 3. Using the Minutes spinner box, choose or type the time
interval (in minutes) that you want the Editor to wait
before it automatically saves the ladder program. Choose
an interval from 1 to 120 minutes. The default setting is 10
minutes.

The program is saved at your specified time interval whenever a
change to the program has been made since the last automatic
save.

If a program you are trying to open has a more current autosaved
copy, the Editor prompts you to choose either the autosaved file or
the program file you last saved.

The auto-saved copy of a ladder program is deleted whenever you
save the program by using the Save command or close the
program.

Displaying a Program in Multiple Windows

To help you simultaneously view different parts of a program, you
can choose to display it in more than one window. Any changes you
make to the program are reflected in the other window(s) in which
the program is displayed. When you open a new window, it
becomes the active window and is displayed on top of all other
open windows.

To display a program in multiple windows

Step 1. Make sure that the program you want to display in a new
window is the active program.

Step 2. Do one of the following:
® From the Window menu, choose New Window.
or

® With no program items selected and the mouse
pointer positioned in the grid area, click the right
mouse button, and choose New Window from the
pop-up menu.
The program window name is appended by a “:#”. For example, if
you chose to display the program LINE_1.pc in a new window, the
new program window would be LINE_1.pc:2.

1.7

1.8

Editing Different Parts of the Same
Program Using Split Windows

A program window may be split into two horizontal panes. Any
editing done in one pane is reflected in the other.

Each pane can be scrolled independently using its own vertical
scroll bar.

To view different parts of the same program using the Split
command

Step 1. From the Window menu, choose Split. The cursor turns
into a split pointer, a combination up arrow and down
arrow.

Step 2. Using the mouse or the up and down arrow keys,
position the cursor at the point in the program where you
would like to split the screen.

Step 3. Press ENTER or click the mouse button once to position
the split between the panes.

To view different parts of the same program by clicking on the
splitter bar

e While pointing to the splitter bar, press the left mouse button,
drag the splitter bar to the desired location, and release the
button.

To remove the splitter bar

e Click on the splitter bar and drag it to the top or bottom of the
window.

or

® Double-click anywhere on the splitter bar.

Editing Multiple Programs

You can edit multiple programs (up to 15) within the Editor at the
same time. Each program has its own window. Only one window at
a time can be the active window, which you can identify by the
highlighted title bar and rung status area.

To edit multiple ladder programs from the Task Manager

Step 1. From the Task Manager, select each ladder program that
you want to edit.

Step 2. From the Task Menu, choose Edit. The files you selected
are opened along with the Editor.

Step 3. From the Editor's Window menu, select Tile or Cascade.
All non-minimized programs are arranged within the
Ladder Editor window. Or, use the mouse to arrange the
windows on the desktop.

Step 4. Click on the program window to make it active before
editing the program.

1-5

1.9

To edit multiple ladder programs from the Editor

Step 1. From the File menu, open all the programs you want to
edit.

Step 2. From the Window menu, select Tile or Cascade. All
non-minimized programs are arranged within the Ladder
Editor window. Or, use the mouse to arrange the windows
on the desktop.

Step 3. Click on the program window to make it active before
editing the program.

Tip
To switch among the programs you are editing, press CTRL+F®8.

Displaying/Hiding Revision Marks While
Editing Programs Offline
Revisions are always displayed while you are editing a program

online. But you can choose to display offline editing revision marks.

Revisions are marked by a letter in the rung status area and by the
modified rung color.

Letter | Meaning
M Logic was modified, or wires have been added
or deleted.

| The rung has been inserted.
D The rung has been deleted.

Tip

If you delete a newly inserted rung before committing or saving the
change, the rung is deleted. However, it is not marked with a “D”
revision mark.

To display/hide revision marks while editing programs offline

Step 1. From the Tools menu, choose Options. A tabbed dialog
box is displayed.

Step 2. From the General tab, locate the Miscellaneous group
box.

Step 3. Choose the Show Revisions While Offline Editing option.
This setting applies to the current and subsequent Editor
sessions until you change the setting again.

Step 4. Click OK to accept the new setting.

1.10

1.11

About Program Properties

The Program Properties dialog box contains three tabs:

Use this tab: | For:
Program Info | viewing information about the program

Scan Info defining how the program should be
scanned and the program’s scan time.

Error Log viewing the online error log

To access Program Properties from the File menu
Step 1. Make sure no rung or instruction is selected.

Step 2. From the File menu, choose Properties. The Program
Properties dialog box is displayed.

To access Program Properties from the pop-up menu

Step 1. Make sure no rung or instruction is selected, and position
the mouse in the program’s grid area away from any
instruction or wire.

Step 2. Press the right mouse button. A pop-up menu is
displayed.

Step 3. From the pop-up menu, choose Properties. The Program
Properties dialog box is displayed.

See the AutoMax Enhanced Ladder Language Reference manual,
J2-3094, for how to interpret the entries in the error log. See section
1.11 below for defining program scan time.

About Program Execution

Programs can execute by being scanned or event-driven. An event
is a flag or indicator that one program can set or raise and another
program can wait for.

Scanned programs execute based on the scan time in ticks you
define. For a ladder program, you can define how often you want
the program to execute by defining scan time in ticks. The actual
scan time of a program is determined by this formula:

scan time (ms) = tick rate of the Processor module * number of
ticks.

You define the tick rate for the Processor module when you add it to
your rack configuration. By changing the tick rate, you can change
the time base for program execution. This allows you to run a
program based on a unit of your choice. You can set the tick rate in
increments of 0.5 ms between 0.5 ms and 10.0 ms. The default
value is 5.5 ms. The tick rate is defined separately for each
Processor in a rack. For more information, see section 1.11.1.

Event-driven programs can be controlled by either hardware events
or software events. When an event-driven is first started (run), the
program executes once to completion. After this initial execution, the
program then waits for the designated event to occur. If you have
program logic that you do not want to run during the initial execution
of the program, use the pre-defined first_scan variable. An example
is shown here:

1-7

first_scan pump_1 walwe_1

11141

1.11.2

1 /1 - 1 | - {]

Hardware events are generated by an external condition. These
AutoMax modules can set a hardware event:

e UDC module (57652)

® Pulse Tach Input module (57C421)

® Resolver Input module (57C411)

e 2-Channel Analog Input module (57C409)

e 32-Bit Digital Input module (57C419)

However, hardware events cannot be used on the AutoMax PC3000.
See a module’s instruction manual for information about interrupts.
For more information, see section 1.11.2.

Software events are flags generated by other programs. Software
events can be set by BASIC, control block, or ladder programs. For
information about programming software events, see your
programming language’s instruction manual and section 1.11.3.

Specifying a Scan Time To Control Program
Execution
For a ladder program, you can define how often you want the

program to execute by defining scan time in ticks. The actual scan
time of a program is determined by this formula:

scan time (ms) = tick rate of the Processor module * number of ticks

Define the scan time by using the Scan Info tab under Program
Properties.

To define how often you want your program to execute

Step 1. Access Program Properties. Make sure no rung or
instruction is selected, and choose Properties from the
File menu.

Step 2. Choose the Scan Info tab.
Step 3. Select Scanned for the Scan Mode.

Step 4. Inthe Scan Time (ticks) field, enter the number of ticks
you want to use. Enter a value from 1 to 32767. The
default value is 20.

For example, if you want a program to execute every 30
ms, and the Processor has a tick rate of 3 ms, enter 10 in
the Scan Time field.

Step 5. Click OK to accept the changes.

Specifying a Hardware Event To Control Program
Execution

Hardware events are generated by an external condition, such as a
digital input or a programmed hardware event from a Resolver
module. Specify the hardware event that triggers a program’s
execution by using the Scan Info tab under Program Properties.

1.11.3

You can specify a timeout for the hardware event. This lets you
specify the maximum amount of time in ticks that can pass before
the hardware event occurs. You can use a timeout as a safeguard in
case something happens to the module you are using to generate
the hardware event. If the event does not occur before the timeout
time, a rack STOP ALL error occurs.

To specify a hardware event

Step 1. Access Program Properties. Make sure no rung or
instruction is selected, and choose Properties from the
File menu.

Step 2. Choose the Scan Info tab.
Step 3. Select Event Driven for the Scan Mode.
Step 4. Select Hardware as the Event Type.

Step 5. In the Name field, type the name of the hardware event
that will trigger the program’s execution.

Step 6. In the ISCR Variable Name field, type the name of the
variable associated with the ISCR (Interrupt status and
control) register on the hardware module being used to
generate the interrupt.

Step 7. Do one of the following:

To: Do this:
specify a timeout for the a. Select the Timeout
hardware event Enabled

b. Enter an integer value
between 1 and 32767

You should set the timeout to
a time longer than what you
expect the actual time will be.
A good general rule is 1.5
times longer than the
expected time between
events.

not use a timeout Make sure the Timeout
Enabled checkbox is not
selected.

8. Click OK to accept the changes.

Specifying a Software Event To Control Program
Execution

A software event is a flag set by another program. Specify the
software event that triggers a program’s execution by using the
Scan Info tab under Program Properties.

To specify a software event

Step 1. Access Program Properties. Make sure no rung or
instruction is selected, and choose Properties from the
File menu.

Step 2. Choose the Scan Info tab.
Step 3. Select Event Driven for the Scan Mode.

1-9

1.12

1.13

Step 4. Select Software as the Event Type.

Step 5. In the Name field, type the name of the software event
that will trigger the program’s execution.

Step 6. Click OK to accept the changes.

Running and Stopping Ladder Programs

Use the Online Task Manager to place a program into run or to stop
a program. If you are editing online, you must pause the Editor
before you can access the Online Task Manager, since they both
share the same communication channel. See “Pausing the Editor,”
section 5.3, for more information.

Exiting the Ladder Editor

Exit the Editor with the Exit command. The Exit command closes all
program windows and closes the Editor.

The Editor prompts you to save any changes to open programs
before exiting. If you choose to close an online program that has
changes that have not been accepted, the Editor prompts you to
return to the editing session or close. Selecting close discards all
the changes.

To exit the Editor
Step 1. From the File menu, choose Exit.

Step 2. If you have made changes to any open ladder program
since you last saved it, choose one of the following
buttons in the message box that asks if you want to save
the changes:

To: Click:
keep the changes Yes

not save the changes | No

not close the program | Cancel

Tip
You can also exit the Editor by choosing Close from the Editor
Control menu.

2.0

21

Editing Programs

This chapter describes how to use the Editor to edit programs
offline. See chapter 5 for information about editing programs online.

Starting a Rung

The first step in entering ladder logic is inserting the first instruction
in the rung. Place the first instruction of a rung against the left power
rail.

All rungs are aligned against the left power rail.

To start a rung

Step 1. Click on the Ladder Language toolbar button that
accesses the group of instructions you need.

An instruction palette appears.

Step 2. Point to the instruction you want to insert, and press and
hold the left mouse button.

Step 3. While holding down the mouse button, drag the
instruction into the program area and next to the left
power rail. While you are dragging the instruction, the
cursor changes to indicate whether you can drop the
instruction and where it will be placed. Instructions

destined for the left power rail will look like |'| For |'E'

Step 4. When the instruction is where you want to place it,
release the left mouse button, dropping the instruction
into place.

IMPORTANT

You must place the first instruction of a rung so that it attaches to the
left power rail to start a rung. If you place it anywhere else in the
program window, you must then cut, paste, or drag to connect it to
the power rail. You cannot draw a wire to connect it to the left power
rail.

Tip
If you frequently use a particular instruction on a toolbar palette, you
may want to turn the toolbar palette on. Once a toolbar palette is on,

just point to the instruction you want to insert, and press and hold
the left mouse button to drag the instruction from the palette.

2-1

2141

21.2

2.2

2-2

Defining the Horizontal and Vertical Grid Limits Per
Rung
You can define limits for the size of the grid used by the Editor to lay

out each rung. This lets you make sure that your program printouts
fit on your preferred page size without the rungs being split up.

Relay instructions occupy a grid space of 1 x 1. More complex
instructions occupy at least 3 units horizontally by 2 to 8 units
vertically.

The default grid size per rung is 40 horizontal units by 24 vertical
units, which is also the maximum grid size per rung.

The Editor lets you place instructions outside the grid limits. Rungs
that exceed either limit cause a warning to be displayed during a
verify operation. The limits you set are checked only when you
perform a verify operation.

To define the horizontal and vertical grid limits per rung

Step 1. From the Tools menu, choose Options. A tabbed dialog
box is displayed.

Step 2. From the General tab, locate the Per Rung Instruction
Grid group box.

Step 3. Enter the desired values for the Horizontal and Vertical
fields. The Editor uses these new values for all
subsequent programs you open.

Step 4. Click OK to accept the new grid size.

Turning the Grid On and Off

Use the grid to help you see where instructions will be placed and
where you can draw wires. You can select whether to display the
grid used by the Editor to lay out rungs. The grid is displayed using
+ symbols.

To turn the grid on or off from the View menu

® From the View menu, choose Grid.

Selecting Rungs
Before you can copy, cut, or move a rung, you must first select it.
You can select a rung by doing any of the following:
® Click on or near the rung number.
or
® Click on the rung description text (when displayed).
or

® Draw a selection box around the entire rung. A selection box is a
dotted-line rectangle like this:

A selected rung looks like this: |—=-

L)l

Tip

If rung numbers are not displayed, you can still select the rung by
clicking in the rung status area next to the rung.

To select a rung by drawing a selection box

Step 1.

Step 2.
Step 3.

Step 4.

Think of the rung you want as being enclosed in a box,
and position the pointer on the white space at either the
top or bottom “corners.”

Press the left mouse button. The cursor changes to +.

Draw a selection box around the rung by moving the
mouse diagonally across the rung. You cannot draw a
selection box to encompass more than one rung.

Tip
If the rung you are selecting extends beyond the screen
display, you can scroll the screen to display the

remaining rung logic by extending the selection box
against any side of the program window.

Once the rung is enclosed in the box, release the mouse
button. The rung is now selected.

To select multiple, contiguous rungs by dragging the mouse
Press and hold the mouse button in the rung status area, and drag

the mouse in either direction (up or down) to select additional rungs.

To select multiple, contiguous rungs by selecting the first and

last rung
Step 1.
Step 2.

Step 3.

Select a rung.

Scroll the screen as necessary to display the last rung
you want to select.

Hold down SHIFT and select the last rung by clicking in
the rung status area next to the rung.

To select all the rungs in a program

e From the Edit menu, choose Select All

or

® Press CTRL+A

or

® From the program window pop-up menu, choose Select All.

2-3

2-4

2.3

Entering Rung Descriptions

Rung descriptions help you document the program'’s logic so that
others can understand the function of each rung and help make
troubleshooting easier. Rung descriptions can contain a maximum
of 16 lines, with each line containing a maximum of 80 characters of
text.

You must turn on rung descriptions to view them in the program.

To enter a rung description in the program window
Step 1. Make sure Rung Descriptions are turned on.

Step 2. Select the rung to which you want to add or edit a
description. The rung description field, which is a dotted
line box, is displayed above the rung. For more
information, see section 2.2.

Step 3. Click in the rung description field and enter the
description.

Tips
e Start a new line by pressing CTRL+ENTER.

® Move around in the rung description field by using the mouse,
HOME, END and the arrow keys. Delete text by using
BACKSPACE or DELETE.

® You can also cut, copy, and paste text in rung descriptions. See
the AutoMax Ladder Editor and Enhanced Ladder Editor help file
for more information.

To enter a rung description in the Rung Properties dialog box

Step 1. Select the rung to which you want to add or edit a rung
description. For more information, see section 2.2.

Step 2. From the File menu, choose Properties.

Step 3. In the Rung Description field, type in the description.
Step 4. Click OK to add the description.

Tip

You can also access the Rung Properties dialog box from the

pop-up menu. Select the rung or point to it. Then, click the right
mouse button and choose Properties from the pop-up menu.

2.4

Inserting Instructions into a Rung

Build a rung by using the mouse to drag and drop instructions from
an instruction palette and connect them together by drawing wires.
The program area is like a blank canvas—you drag instructions
from the instruction palettes and drop them in the program area. But
first, you must start a rung by dragging an instruction from an
instruction palette and dropping it very near the left power rail. To
help make inserting instructions easier, the insert cursor indicates
when and in which direction you can drop an instruction. See
section 2.1 for more information on starting a rung.

When dropped into the rung, the instructions indicate where you
can attach another instruction or wire. Contact instructions have
connections on either side, but coil instructions can only connect to
another instruction on the left side.

For instruction blocks like ADD, you can connect other instructions
to the longer lines. These longer lines attach to Boolean input and
output parameters.

An inserted instruction belongs to the rung above it if the newly
inserted instruction does not start a rung.

To insert instructions into a rung

Step 1. Click on the Ladder Language toolbar button that
accesses the instruction palette you want to use.

The instruction palette appears.
Step 2. Point to the instruction you want to insert.

Step 3. Press and hold the left mouse button while dragging the
instruction into the program area.

Step 4. When the pointer is where you want the upper-left corner
of the instruction to be, release the left mouse button,
dropping the instruction into place.

If you drop an instruction very near another, the newly-placed
instruction automatically connects to the one adjacent to it. Similarly,
you can insert an instruction between two instructions by simply
dragging it between the existing two.

Tip
If you frequently use the instruction on a toolbar palette, you may

want to turn the toolbar palette on. See “Turning the Toolbars and
Palettes On and Off” in Appendix A.

Tip
If you delete or cut the first instruction of a rung, the left power rail

connection stays, indicating that you can insert a new instruction.
Insert the new instruction to the right of the left power rail connector.

Tip
You can move or copy one or more instructions from one rung and

insert them into another rung. See “Moving Instructions” and
“Copying Instructions” in the AutoMAx Ladder Editor online help.

2-5

2.5

2.6

2-6

1543

Connecting Instructions (Drawing Wires)

Connect instructions when you want to create branches (parallel
logic) or to connect two or more instructions together that were
placed too far apart for them to connect automatically. Connect
instructions by drawing wires.

You can use the grid markers to help you determine where
instructions will be placed and where you can draw wires.

To connect instructions

Step 1. Place the cursor near a connection point for an
instruction. For relay logic, the connection point is either
the left side (for coils) or both sides (for contacts). For
block instructions, the connection points are the free
ends of the long lines.

When the cursor is near a connection point, it changes to

include a pencil: %‘?

Step 2. Press and hold the left mouse button. The cursor
changes to a pencil.

Step 3. Draw the wire by moving the mouse towards the
instruction to which you want to connect. You can draw a
continuous wire to connect instructions in a branch and
the coils at the end of the rung. A dotted line indicates
where the wire will be placed.

Step 4. When you reach the destination connection point, release
the mouse button.

The wire is drawn to connect the instructions.

Connecting Multiple Instructions by Using
the ENO Output Bit

Quickly build a rung by connecting a relay instruction or a Boolean
input of an instruction to the ENO output parameter of an instruction
block. For example:

L EM

In

MOVE MOVE .
Out=In Out=In coil
END BN 277 A—

BT1_DEST 0 BT1_UPDATE
Out In Out

The Boolean input parameter’s or relay instruction’s state is linked to
that of the ENO output parameter.

The ENO output parameter for an instruction follows the state of
that instruction’s EN input parameter unless an error occurs.
When an error occurs within an instruction, the ENO output
parameter is set according to the pre-defined variable
ERROR_ENO. Because the default value of ERROR_ENO is
false, instructions connected to the ENO output are disabled
when an error occurs in the instruction block containing the ENO
output. Should you want to continue evaluating and executing the
logic connected to an ENO output, set the variable ERROR_ENO
true.

2.7

Selecting Instructions

Before you can copy, cut, clear, or move an instruction, you must
first select it.

To select an instruction

e Click on any part of the instruction such as the instruction itself, a
variable used in the instruction, or the description.

or

e Draw a selection box around the instruction. A selection box is a
dotted-line rectangle like this:

A selected instruction looks like this: |—=-=

To select an instruction by drawing a selection box

Step 1. Think of the instruction you want to select as being
enclosed in a box and position the pointer on the white
space at either the top or bottom “corners.”

Step 2. Press the left mouse button. The cursor changes to +.

Step 3. Draw a selection box around the instruction by moving
the mouse diagonally across the instruction. Once the
instruction is enclosed in the box, release the mouse
button. The instruction is now selected.

2-7

2-8

2.8

To select multiple, contiguous instructions by drawing a
selection box

® Draw a selection box to encompass the instructions you want to
select. You can only select instructions that belong to the same
rung.

or
Step 1. Select an instruction.

Step 2. While pressing SHIFT, place the mouse pointer on the
selected instruction and press the left mouse button.

A selection box appears.

Step 3. While holding down the mouse button, drag the selection
box to encompass the instructions that you want to
select.

Tip

If the instructions you are selecting extend beyond where they are

displayed on the screen, you can scroll the screen to display the

remaining instructions by extending the selection box against any
side of the program window.

About Instruction Properties

The Instruction Properties dialog box contains two tabs:

Use this tab: For:

Instruction ® changing the instruction’s type
Info

® viewing the variable names used in the
instruction’s input and output parameters

Variables ® viewing the variables used in the instruction
® entering a variable description

® changing variable’s data type, scope,
initialization, and display format

® specifying a maximum array index

To access Instruction Properties from the File menu
Step 1. Select an instruction.

Step 2. From the File menu, choose Properties. The Instruction
Properties dialog box is displayed.

2.9

To access Instruction Properties from the pop-up menu

Step 1. Point to the instruction, and press the right mouse button.

Step 2. From the pop-up menu, choose Properties. The
Instruction Properties dialog box is displayed.

To display the variable properties tab, choose Variables. To display
information about the instructions, choose Instruction Info. Quickly
toggle between the two tabs by using CTRL+TAB.

Changing an Instruction Type

You can change an instruction to another compatible instruction
without having to re-enter the variable names for the parameters.
This feature helps reduce the time required to make logic changes.

Compatible instructions are those with the same basic function
and/or the same number of inputs and outputs. For example, you
can change an NOI instruction to a NCI instruction because these
instructions are compatible relay input instructions. Conversely, you
cannot change an NOI instruction to a CO or an ADD instruction
because these instructions are not compatible.

To change an instruction type by using Find and Replace

Step1. Clickon

The Find dialog box is displayed.
Step 2. In the Objects group box, choose Instruction.

Step 3. In the Find Instruction list box, choose the instruction for
which you want to search. This list only displays those
instructions that are compatible with the selected
instruction.

Step 4. Choose Find.

The Editor searches the program for the instruction you
specified.

Step 5. Choose the Replace button.

Step 6. In the Replace Instruction list box, choose the instruction
that you want to use in place of the instruction you are
searching for. This list only displays those instructions
that are compatible with the selected instruction.

Step 7. Choose Replace to replace the current instruction with
the new one or Replace All to replace all occurrences of
an instruction with another.

To change an instruction type by using its Instruction Properties
Step 1. Select the instruction you want to change.

Step 2. From the File menu, choose Properties.

Step 3. Choose the Instruction Info tab.

Step 4. From the Type list box, choose the instruction type that
you want to use in place of the selected instruction. This
list only displays those instructions that are compatible
with the selected instruction.

Step 5. Click OK to accept the change.

2-9

2.10

2-10

Tip
You can also access the Instruction Info tab from the pop-up menu.

Point to the instruction that you want to change, press the right
mouse button, and choose Properties from the pop-up menu.

Tip
You can also change the information about the variables used in the

instruction. Simply choose the Variables tab or press CTRL+TAB to
display the Variable Properties.

Tip
To select the instruction and access the pop-up menu, place the
mouse pointer over the instruction and click the right mouse button.

Assigning Variables and Constants to
Ladder Instruction Parameters

Each instruction includes at least one input or output parameter. The
more complex instructions contain parameters for multiple
non-Boolean inputs and outputs. Each parameter has a variable
name field in which you enter the variable name or constant that you
want to assign to the parameter.

To help make assigning variables to instruction parameters easier
and faster, variables are automatically assigned a default data type
and scope when they are first entered. The default type is that most
likely to be used by the instruction. For example, the default type for
a variable name entered for a relay instruction is Boolean. But for a
JMP, the default type is label. For most block instructions, the default
type for input and output parameters is integer.

When you enter an element-indexed variable, a default maximum
array index is automatically assigned, which you can later change in
the Variable Properties.

The scope of the variable is determined by the case of the first letter
of the variable name you type. If the letter is upper case, the variable
defaults to being a global variable. If the letter is lower case, the
variable defaults to being a local variable.

To assign variables or constants to ladder instruction
parameters

Step 1. Select the instruction for which you want to assign
variables. The variable name field appears as a
dotted-line box.

Step 2. Click in this dotted-line box. The outline becomes solid
and a vertical text cursor appears.

Step 3. Type in the variable name or a constant you want to use
following the naming conventions of the Editor. See the
reference information for the instruction you are
programming for more information about the allowable
variable types. The scope of a variable can be either
global or local. When you first enter a variable, its scope
is defined based on the case of the first letter you type.
An upper case letter defines the variable to be global. A
lower case letter defines it to be local. See section 2.15
for more information about a variable’s scope.

2.11

Tip

If the variable has not been used before, a default data type and
scope is automatically assigned. If the variable is an array, the
maximum array index defaults to the value you entered as the
element of the variable. For example, if you entered part[5] the value
of 5 would be entered into the Maximum Array Index field of the
Variable Properties.

If the element-index of an array is a variable, the Maximum Array
Index field contains a value of 1.

Tip

If the variable has been used before, you can save typing by using
Variable Smart-Matching. See section 2.12 for more information
about Variable Smart-Matching.

Tip

To enter hexadecimal constants:

® End hexadecimal constants with an “h” or “H”.
For example: 607H

e [f the hexadecimal constant begins with a letter, enter a leading 0
before the value.
For example: 0A607H

e [f the most significant bit of the hexadecimal constant is set and
the constant is fewer than 8 digits, sign-extend it with “F’s” into
an 8-digit hexadecimal value.

For example: Enter 9C40H as OFFFF9C40H

The Editor converts a hexadecimal value to a decimal constant,
except for the logical and Masked Move instructions.

Entering Variable Descriptions

Variable descriptions help you document variables used in
instructions. Each variable can have its own description; however,
the description applies to simple or array variables and not to
indexed variable names. For example, the description displayed for
the variable TANK fill would be for the variable TANK.

The descriptions can contain a maximum of 40 characters.
You must turn on variable descriptions to view them.

To enter a variable description by clicking into the variable
description field above a variable

Step 1. Make sure that the variable descriptions are turned on.
Step 2. Select the instruction.

Step 3. Click in the variable description field above the variable
for which you want to enter a description. When selected,
the variable description field is outlined by a solid border.

Step 4. Enter a description containing a maximum of 40
characters.

Tip

A shortcut to entering a variable description is to click twice on the

variable name and press TAB to advance to the variable description
field. Enter a maximum of 40 characters of text.

2.12

2-12

To enter a variable description by using the Variables tab in the
Instruction Properties dialog box

Step 1. Select the instruction that contains the variables you want
to document.

Step 2. From the File menu, choose Properties. The Instruction
Property dialog box is displayed.

Step 3. Choose the Variables tab. The Variables Properties box is
displayed.

Step 4. In the Name list box, choose the variable you want to
document.

Step 5. Click on the Description field, and type in the description.
Step 6. Click OK to add the description.

Tip

You can also access the Variable Properties dialog box from the
pop-up menu. Point to the instruction containing the variables to

which you want to add or edit a description, press the right mouse
button, and choose Properties from the pop-up menu.

Tip
Move around in the name field by using the mouse, HOME, END,
and arrow keys. Delete text by using BACKSPACE or DELETE.

Tip
To select the instruction and access the pop-up menu, place the
mouse pointer over the instruction and click the right mouse button.

Using Variable Smart-Matching

Variable smart-matching is an option you can use to help you enter
variable names in less time. The Editor maintains an alphabetical
and case-sensitive list of variables you have used. When this option
is on and you begin entering letters in the variable name field, the
first variable name in the Editor’s list that matches the first letter or
letters you have typed appears in the variable name field. For
example, if you have previously used the variables “pump” and
“packet” and you type the letter “p” in a variable name, the word
“packet” is inserted into the variable name field. If “packet” is the
variable name you want, you can stop typing. If you had typed a “B”
global variables (which begin with an uppercase P) would have
been offered by the Variable Smart-Matching option.

If variable smart-matching displays a variable name that you only
want to use part of, you must delete the extra characters by pressing
BACKSPACE or DELETE.

To turn the Variable Smart-Matching option on and off

Step 1. From the Tools menu, choose Options. The Option dialog
box is displayed.

Step 2. Choose the General tab and locate the Miscellaneous
group box.

Step 3. Choose the Variable Smart-Matching option. This setting
applies to all subsequent editing sessions.

Step 4. Click OK to accept the new setting.

To scroll through the available variable names that match the
character(s) you have typed

® To advance, press CTRL and the down arrow.

® To move backward through the matching variable names, press
CTRL and the up arrow.

The Variable Smart-Matching option provides matches to each part
of an element-indexed and/or bit-indexed variable. Enter the
element-index or bit-index delimiter and the first letter or letters of
the element or bit name. Then, scroll through the variable name
choices offered. The choices offered by the variable smart-matching
option are determined by how many letters you type in.

Tip
® To append onto a variable name picked from the variable

smart-match choices, make sure the variable name is not
selected before continuing to type.

® To re-initialize smart-matching, delete characters (by using
BACKSPACE), and re-type one or more.

Tip
If you type a question mark (?) as the first letter of a variable name,

the Editor automatically smart-matches on the first variable in your
variable list.

2.13 Selecting Variable Names

Before you can copy, cut, or clear a variable name you must first
select it.

To select a variable

Step 1. Select the instruction that contains the variable you want
to edit. The variable name fields appear as dotted-line
boxes.

Step 2. Click the dotted-line box. The outline becomes a solid
box and the text is selected.

2.14 Changing a Variable’s Data Type

When you enter a variable name in an instruction’s input or output
parameter, a default data type is assigned based on the instruction
type. If you want to change a variable’s data type to something other
than the default, you can change it by using the Variable Properties
tab.

IMPORTANT

Changing the properties of a variable affects the variable, not just a
particular instance in which it is used. For example, if you change
the data type of a variable from timer to integer and that variable
happens to be used in a TON instruction, this integer variable will no
longer be allowed within the instruction.

2-13

2.15

To change the data type for a variable

Step 1. Select the instruction containing the variable whose data
type you want to change.

Step 2. From the File menu or the pop-up menu, choose
Properties. The Instruction Properties dialog box is
displayed.

Step 3. Choose the Variables tab. The Variable Properties tab is
displayed.

Step 4. If the name of the variable you want is not displayed in
the Name field, use the list box to scroll through a list and
choose it. The Variable Properties dialog box for that
variable is displayed.

Step 5. Using the Type list box, choose the data type for the
variable.

Step 6. Click OK to accept the change.
Tip
Integer variables default to a 16-bit integer. If you want the variable

to be a double integer (32-bits), you must change its type to double
integer.

Tip
Quickly toggle between the Instruction Info and Variables tabs by
using CTRL+TAB.

Tip
To select the instruction and access the pop-up menu, place the
mouse pointer over the instruction and click the right mouse button.

Changing a Variable’s Scope

The scope of a variable can be either global or local. When you first
enter a variable, its scope is defined based on the case of the first
letter you type. An upper case letter defines the variable to be
global. A lower case letter defines it to be local. You can change a
variable’s scope by using the Variable Properties tab.

Compound variables (element-indexed or bit-indexed variable
names) are treated as separate variables with their own properties,
including scope. For example: TANK.fill is a compound variable.
TANK is a global variable and fill is a local variable. For
element-indexed and bit-indexed variables using a number as the
index, the scope of the variable is determined by the named
variable. For example, the scope of the variable TANK.31 would
would be determined by TANK, which would appear in the variable
list. If the variable were TANK.31, only TANK would appear in the
variable list and have a scope.

IMPORTANT

Changing the properties of a variable affects the variable and not
just a particular instance in which it is used. If you change a
variable’s scope, the change applies to every instance where that
variable is used.

To change a variable’s scope

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
Tip

Select the instruction containing the variable whose
scope you want to change.

Access its Instruction Properties by choosing Properties
from either the File menu or the pop-up menu. The
Instruction Properties dialog box is displayed.

Choose the Variables tab. The Variable Properties tab is
displayed.

If the name of the variable you want is not displayed in
the Name field, use the list box to scroll through and
choose it. The Variable Properties tab for that variable is
displayed.

Click on either the Global or the Local option. The
variable name changes to be either all upper case or
lower case, depending on which option you chose.

Click OK to accept the change.

Quickly toggle between the Instruction Info and Variables tabs by
using CTRL+TAB.

Tip

To select the instruction and access the pop-up menu, place the
mouse pointer over the instruction and click the right mouse button.

2-15

3.0

Printing Programs

Print a program to mark up or maintain a paper record of it. You can
print:

® an entire program or a range of rungs
® rung descriptions

® only rung descriptions

® variable descriptions

® instruction cross-reference

® program cross-reference

® multiple copies of a program

The ladder diagram prints out on the default printer you have
defined for the computer. Make sure that this printer is connected
and the proper print driver is installed. See the Windows 95
documentation for more information.

You can print a program by choosing:
e the Print button from the Standard toolbar

® Print from the File menu

To print a program from the Standard toolbar

Step 1. Make sure that the program you want to print is in the
active program window.

Step 2. Choose

To print a program using the Print command

Step 1. Make sure that the program you want to print is in the
active program window.

Step 2. Do one of the following:
® From the File menu, choose Print.
or
® Press CTRL+P

The Print dialog box appears. You can use the Print
dialog box to change the number of pages, page
orientation, or set new print options.

3-1

Step 3. Use this table to help you with your next steps:

To: Do the following:

print all the rungs in In the Print Range box, select All.
the program

print only the rungs In the Print Range box, select
within a selected Selected Rungs.

range

print more than one Enter or select the number of

copy of the program copies using Copies.

define page margins Choose Page Setup.

define other print Choose Options.
options

Step 4. When you are ready to print the program, choose OK.

The document is sent to the printer that is displayed at
the top of the dialog box (the default printer).

What Is Included in a Printed Copy of a
Program

Your program printout includes the items you have chosen to print
using the Print Options tab.

A program printout includes:

® header information, which describes the program’s path, when it
was last edited, and whether the page is the program’s source
code or cross-reference

® rungs, which you can select to print using the Print Options tab

® variable and rung descriptions, both of which you can select to
print using the Print Options tab

® program and instruction cross-references, both of which you can
select to print using the Print Options tab; see below for more
information on the program cross-reference

e initial value table for the variables that have a user-specified or
retained initial value that is different from the default value

® program properties table, which lists pertinent data about the
program such as:

® the program’s name and path

® program’s scan time displayed in the Scan Info Tab of the
Program Properties

® the number of rungs and symbols in the program

e the date the program was created and the date it was last
revised

e the size of the program’s image, its verify status, and the
amount of online reserve memory it requires; see Appendix
D for more information

When you print the Program (task) cross-reference, it prints at the

end of the printout and is printed for the entire program, even if you

selected only a range of rungs to print. The program cross-reference
contains the following items:

variable name table

This table includes each variable used in
the task, its data type, the instruction and
rung where it is used, its I/O type, the
hardware address, its description, and the
line cross-reference. If the database does
not exist, the text “Unknown” is printed for
the descriptions and cross-reference
information.

rung table

This table includes information about each
variable used as an output in the program,
including the rung number where the
variable appears, its name, the instruction
symbol or mnemonic in which the variable
is used, I/O description, and the variable
description from the program variable
table.

messages

The Editor prints any messages about the
cross-reference summary, verify result
summaries, print processing, and
database processing after the rung table.

When printing the program from the Editor,
verify warnings are printed if you have not
selected Ignore Warnings in the General
Tab.

The items in the program are printed in the following order:

1. rungs

. instruction cross-reference (if selected)

2
3. initial value table
4

. program cross-reference, including the variable table, rung list,

legends, scan information, verify error statement, and summary (if

selected)

3-3

Setting Print Options

You can choose the type of information to print on your programs’
printout. Choose to print or not to print the following:

Descriptions Only

To print: Choose: Result:

a program’s ladder Rungs The rungs are printed.

logic rungs

any description Rung The rung descriptions print

assigned to rung Descriptions above the rung.
The line length is the same as
the page width. The description
is truncated if it is longer than
the page width.

only rung descriptions | Rung The rungs, variable descriptions,

and instruction cross-reference
are not printed.

You can also choose to print the
program cross-references when
you choose Rung Descriptions
Only.

you track where
variable names are
written and where they
are read

Cross-Reference

any description Variable The variable descriptions are

assigned to a variable | Descriptions taken from program symbol
table and are printed above
variable name, just as they are
displayed in the program.

information that helps | Instruction The instruction cross-reference

is printed with each rung.

When only a range of rungs is
selected, the instruction
cross-reference still includes
references for the entire
program.

variable name table
and a rung table

Program
Cross-Reference

The program (task)
cross-reference prints at the end
of the program printout after the
rungs. Included is a variable
name table and a rung number
table.

When only a range of rungs is
selected, the program
cross-reference is still printed
and provides references for the
entire program.

Choose any print options on the Print Options Tab, which you can
access from the Tools menu or from the Print dialog box. These
items are printed by default:

® rungs

® variable and rung descriptions

® program and instruction cross-references

To define the print options

Step 1. Access the Print Option Tab by choosing:
® Options from the Tools menu and then the Print Tab
or
e the Options button on the Print dialog box

Step 2. Choose the items you wish to print when you print a
program. Your choices are listed within the Print What
group box.

Step 3. Click OK.

The options you choose apply to any program that you print.

Tip

'llj'o return to using the default print options, select the Use Defaults
utton.

Defining the Page Setup

You can change the page margins for the paper copies of the
programs that you print.

The default margins are:
® top and bottom margins, 1 inch
® |eft and right margins, 0.5 inches.

Once you set the page margins, they apply to all subsequent
programs that you print.

To set the page margins for the programs that you print
Step 1. Do one of the following:

e Click on

or
® From the File menu, choose Print
or
® Press CTRL+P
Step 2. At the Print dialog box, choose Page Setup.

Step 3. Enter the new measurements for the top, bottom, left and
right margins.
Note: If you choose margins that are less than the
printable area on the printer/paper, the printout is still
printed, but the measured margin may not accurately
match your selections.

Step 4. Click OK.

3.4

Single Page

How a Rung Is Printed To Fiton a

The Editor prints a rung (including rung descriptions, variable
names and descriptions, and instruction cross-references) on one
page. If a rung or an instruction block cannot be printed entirely on
one page and there are other rungs on the page, the Editor forces
the logic to a new page. If the rung or an instruction cannot be
printed entirely on the new page, the Editor breaks up the logic as

follows:
If a rung or The Editor: The split is indicated as
instruction follows:

cannot be printed
to fit on the page:

vertically

finishes printing it on a new
page

WWW This symbol
prints at the
bottom of the
page, indicating
lines continue on
the next page.

This symbol
prints at the top
of the page,
indicating lines
continue from the
previous page.

horizontally

wraps it to the next line

Wrapped rungs are printed
across the page from top to
bottom then left to right.
This means that if one
branch of a rung cannot be
printed across the page,
the continuation of the
branch appears below the
last branch of the rung as
illustrated in the figure
below.

When a wrapped rung is
printed on a page, the next
rung in the program prints
on a new page.

This symbol prints on
the right side of the
page, indicating that
instructions are being
extended to the next
line.

This symbol prints on
the left side of the page,
% indicating that the

< instructions are
continuations of the
rung or branch above.

3-6

3.5

3.6

Wires and instructions can also be split. See the following example:

===

== —

i
3

Mote that this instruction i= a continuation from the
— first branch.

Inserting and Deleting Page Breaks

Use a page break to paginate a program’s printout for a cleaner
look.

To insert or delete a page break

Step 1. If you are inserting a page break, select a program object
with which you want to start a new page. If you are
deleting a page break, select a program object that starts
a new page.

Step 2. From the Insert menu, choose Page Break.

The Editor inserts or deletes the page break above the selected
program object. Page breaks are displayed horizontally across the
screen.

Printing a Range of Rungs

If you do not want to print an entire program, you can print a range
of rungs that you have selected.

To print a range of rungs
Step 1. Within the program, select the rungs you want to print.
Step 2. Do one of the following:

e Click on

or

e From the File menu, choose Print

or

® Press CTRL+P
Step 3. In the Print dialog box, choose Selected Rungs.
Step 4. Define page margins or print options, if necessary.
Step 5. Click OK.

The document is sent to the printer that is displayed at the top of the
dialog box (the default printer). If you have selected to print a
program cross-reference, one is printed for the entire program.

3-7

3.7

3.8

3-8

Displaying and Printing Coils as
Right-Justified

Use the Right Justify Coils after Verify feature to automatically move
coils to the right side of the printout so that you can more easily
read your program. If coils are not blocked by another instruction,
the Editor aligns them against the first vertical page break. Coils that

already extend past this page break are moved left and up. (They
are not moved to the next page break.)

To display and print programs with right-justified coils
Step 1. From the Tools menu, choose Options.

Step 2. On the General Tab, choose Right Justify Coils after
Verify.

Step 3. Click OK.

Coils are only moved out to the grid limit when the limit is to the left
of the first vertical page break.

The default option is not to right-justify coils after verifying or printing
a program. The rungs are displayed and printed compressed up
and to the power rail when you verify or print the program.

Printing Multiple Copies of Programs

You can print more than one copy of a program at a time.

To print multiple copies of a program

Step 1. Make sure that the program you want to print is in the
active program window.

Step 2. Do one of the following:

e Click on

or
® From the File menu, choose Print
or

® Press CTRL+P

Step 3. Within the Print dialog box, use the Copies spinner box to
enter or select the number of copies you want to print.

4.0

Verifying Programs

Use the Verify command to help debug your ladder program. During
the verification process, the Editor checks your program and notifies
you of any errors that would prevent the program from running. If
you choose, the Editor can report less serious issues, called
warnings. See section 4.3 for more information. The error and
warning messages also include information about the rung and grid
location in which the error or warning occurred.

A program whose verify operation results in errors is not
successfully verified and cannot be downloaded to a Processor and
run. If only warnings result after a verify operation, the program is
considered verified. Look at the bottom right corner of a program’s
status bar or in the Program Info tab (Program Properties) for the
program’s verification status, either Verified or Not Verified.

As the Editor verifies a program, it automatically compresses the
rung to the left and up by deleting rows and columns that do not
contain an instruction and minimizing wire lengths. Coils are moved
out to the vertical page break if the Right-Justify Coils after Verify
option is not selected. See section 3.7 for more information.

The Editor automatically verifies an online program when you
choose to commit any online changes or place the program in Test
Mode. Online program changes cannot be downloaded to a
Processor and run until they are successfully verified.

Each program has its own Verify Output window that lists the error,
warning, and status messages generated during the verify process.
Because the Verify Output window is separate from the program
window, you can easily switch between the program and the verify
messages as you troubleshoot your program. The title of the Verify
Output window is the name of the program appended by a .LOG
extension. If you choose to verify the program again while the Verify
Output window is open, the information in the window is overwritten.
Within the Verify Output window, you can search for text and print
the log file.

When offline programs are verified, the Editor does not check the
Variable Configurator or create a verify log file unless you set the
applicable options in the General tab of Tool Options. See sections
4.1 and 4.2 for more information.

To verify a program

Step 1. Make sure the program you want to verify is the active
program.

Step 2. From the Tools menu, choose Verify.

4-1

4-2

4.1

4.2

Creating a Verify Error Log File

Select the Generate Log File option in the General Options tab to
create a log file on disk containing the same error, warning, and
status messages as the Verify Output window. This file is stored in
the same path as the program with the same name but with a .LOG
extension. It can be opened and viewed using a text editor like
WordPad®. The Editor generates a log file for each program by
default.

To create a verify log file
Step 1. From the Tools menu, choose Options.

Step 2. On the General tab, select the Generate Log File option in
the Verify group box.

Step 3. To accept the change, click OK or Apply.

Tip

Deselecting this option prevents the Editor from generating the log
file.

Automatically Checking the Variable
Configurator Database While Verifying a
Program

Select the Check Variable Configurator Database option in the
General tab of Tools Options to automatically check the properties
of a variable against the Variable Configurator database. When this
option is selected, the Editor determines whether:

® global variables used in the program are declared in the Variable
Configurator database

® global variables using Retained Value initialization are declared
as non-volatile

® global timer and counter variables are non-volatile

® array variables used in the program have the same dimension as
those defined in the Variable Configurator database

The Editor checks the Variable Configurator database by default.

To automatically check the Variable Configurator database while
verifying a program

Step 1. From the Tools menu, choose Options.

Step 2. On the General tab, select the Check Variable
Configurator Database option in the Verify group box.

Step 3. To accept the change, click OK or Apply.

Tip

Deselecting this option prevents the Editor from checking the
Variable Configurator database. This makes verifying a program
faster. However, you cannot install and run a program that contains

global variables that are not defined in the Variable Configurator
database.

4.3

4.4

Specifying Whether To Include Warning
Messages When Verifying Programs

Select the Ignore Warnings option in the General tab options from
the Tools menu to prevent verify warnings from being displayed in
the Verify Output window and verify log file (if the log file is
generated). Verify error messages are always displayed in the
output window and log file. By default, the Editor includes verify
warning messages in the output window and log file of offline
programs that you verify. The Editor does not include warning
messages arising from committing online changes or placing the
program in Test Mode.

To prevent warning messages from displaying in the verify log
file

Step 1. From the Tools menu, choose Options.

Step 2. On the General tab, deselect the Ignore Warnings option
in the Verify group box.

Step 3. To accept the change, click OK or Apply.

Resolving Verify Errors

The Verify Output window lists error messages and, if you choose,
warning messages that help you debug a program. Error messages
also include the rung number and grid location of the logic in which
the verify error occurred. For example,

This error:

In Rung #8 at location {4,1}

Variables of type Timer or Counter cannot be used on a coil.
Means:

The coil located in the fourth column of the first row in rung 8 has
a timer or counter associated with it.

Because the Verify Output window is separate from the program
window, you can easily switch between the program and the verify
messages as you troubleshoot your program.

Tip
To switch between the two windows, press CTRL+F6

4-3

5.0

Editing Programs Online

Editing a program online lets you modify ladder logic and the initial
values of variables as well as set, force, and unforce variables. You
can be connected to a Processor via a serial connection or a PC
Link interface connection. If you are connected via the PC Link
module, you can have multiple online programs from different
networked racks opened simultaneously.

While a program is running, you can view the power flow of
executing logic, variable state information, and any instruction
runtime error codes generated.

An Overview of Editing and Downloading the Changes

Step 1. Open the program by using the Monitor PC Program
command from the Editor, Task Manager, or System
Configurator.

Step 2. Make your changes to the online program.
Step 3. Accept the changes.
Step 4. Download the program modifications to the Processor.

About the Changes You Can Make

While editing an online program, you can add new variables with
some limitations and restrictions, but you cannot add or edit variable
or rung descriptions. See “About the Limitations for Inserting and
Modifying Rungs in Online Programs” in Appendix D for more
information. When you add global variables, make sure the variables
are non-volatile and do not have retained initialization data. You
must define global variables in the Variable Configurator database. If
you enter a global variable in an online ladder program and that
variable is not in the Variable Configurator database, you get a verify
error when you commit the online changes.

IMPORTANT

Add global variables to the Variable Configurator database before
making the online changes.

You can also view rung and variable descriptions. When opening an
online program, you can choose whether or not you want to display
rung and variable descriptions. When you open an online program,
the logic is uploaded from the Processor to your computer. If you
choose to display the variable and rung descriptions, these are
extracted from the program’s source file, which must be accessible
by located on the computer you are using to edit the online version
of the program. For more information, see “Choosing To Display
Descriptions While Editing/Viewing an Online Ladder Program” in
the AutoMax Ladder Editor and Enhanced Ladder Language online
help.

5-1

5-2

5.1

About Accepting and Downloading Your Changes

When you set, force, unforce, or change a variable’s initial value, the
change takes effect immediately in the online program. Other
changes such as adding, deleting, or modifying a rung must be
accepted before the change takes effect. You can accept one or all
rungs that have been added, deleted, or changed. Accept changes
that you want to download to the Processor. Once any changes are
accepted, you can temporarily load them into the Processor (place
the program in test mode) or permanently download them to the
Processor (commit the changes).

Before any changes are downloaded to the Processor, either
permanently or temporarily, the changes are verified using the same
rules used for verifying offline programs. If the program does not
pass the verification process, you must correct the errors and
accept them again. An edited online program is downloaded to a
Processor only when all the accepted changes to the program have
been successfully verified. The verified changes are downloaded to
the Processor as a group, not as individual rungs. See ‘About How
Changes Made to Online Programs are Verified” in section 5.9 for
more information.

About Accessing the Online Task Manager

You can access the Online Task Manager from the Editor, Task
Manager, or the System Configurator. The Online Task Manager and
the Editor cannot share the same communication channel. If you
need to use the Online Task Manager while editing an online ladder
program, you must place the Editor in a paused state. By pausing
the Editor, you free up the communication channel so the Online
Task Manager can use it. See section 5.3 for more information.

About the States of Online Programs

An online program is in one of the following states at any time:

State:

Description:

How the state is
indicated:

Run

The program is actively
executing in a Processor
and power flow is
displayed.

The word “RUN” appears
the Editor’s status bar, and
the left power rail is
highlighted in the power
flow color. In the Online
Task Manager, the word
“Run” appears in the status
column.

Stopped

The program is not actively
executing.

The word “STOP” appears
the Editor’s status bar. In
the Online Task Manager,
the word “Stopped”
appears in the status
column.

State: Description: How the state is
indicated:

Test The program is actively The text “Test Mode”

mode executing rungs, but the appears after the file name
changes made to an online | in the window’s title bar.
program are not See “Testing Programs
permanently installed in the | (Test Mode),” section 5.8,
Processor. You can test the | for more information.
changes you made to an
online program.

Paused When the Editor is paused, | The status bar for windows

the programs continue to
run in the Processor, but
their display in the program
window is not updated.

The Processor connection
is freed so you can access
the Online Task Manager.
Because the Online Task
Manager and the Editor
cannot share the same
communication channel to
the Processor, the Pause
command allows you to
place the Editor into a
paused state.

The online program
windows that are paused
after you select the Pause
command from the Online
menu are:

® windows containing your
online programs

® Original Program
window

The Set/Force/Unforce
dialog box is also closed.

that are in the paused state
is blank and the text
“Paused” appears before
the file name in the
window’s title bar. See
“Pausing the Editor,”
section 5.3, for more
information.

5-3

5-4

5.2

Monitoring an Online Ladder Program

Before you can edit an online program, you must open it using the
Monitor PC Program command from the Online menu. You access
this command from the Editor, Task Manager, or System
Configurator.

To monitor an online ladder program

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Close the Online Task Manager application if it is running.

The Online Task Manager uses the same online
connection as an opened online program. Both
applications cannot be accessed at the same time.

Do one of the following:

® From the Online menu of the Editor, Task Manager, or
Software Configurator, choose Monitor PC Program.

or

e Click on

The Monitor PC Program dialog box is displayed.

Using the Look In area of the dialog box, navigate to the
location containing the ladder program you want to open.
You can look in these folders:

® Direct — for programs available in the Processor to
which you are connected

® Network — for programs located on Processors
connected to the network

Once you have located the program you want to monitor,
select the program’s icon displayed in the Files area of
the dialog box. To select more than one program to open,
do one of the following:

® Draw a selection box around the programs you want
to open.

® To select individual programs, press [CTRL] while
selecting the program icons with the mouse.

® To select all programs, select the first program, and
press [SHIFT] while selecting the last program.

Notice that the program’s name appears in the File name
field.

If you want to view the rung and variable descriptions
while monitoring the online program, see “Choosing To
Display Descriptions While Editing/Viewing an Online
Program” in online help.

Click OK to open the program.

The program you selected is opened.

Tip

You can have multiple online programs opened at once.

5.3

5.4

Pausing the Editor

Because the Online Task Manager and online programs in the Editor
use the same communication channel, you must place the Editor in
the Paused state before you can use the Online Task Manager. The
programs continue to run in the Processor, but their display in a
program window is not updated.

IMPORTANT

Before pausing the Editor’s online program windows, you might
want to commit any pending changes. All pending changes are lost
once an online program is paused and then removed from the
paused state.

Any trigger information is also lost when you remove online program
windows from the pause state.

To pause or un-pause the Editor
e From the Online menu, choose Pause.

or

e Click on @

While online programs are paused, the status bar is blank and the
word “Paused” appears in the programs’ title bar.

Remove the programs from the paused state when the
communication port is again available. The Editor re-establishes
communication to all available ports and notifies you when a
connection is not available. If a connection is not available, the
online programs stay paused.

For more information about the paused state, see section 5.1.

About Power Flow

Power flow indicates the rungs and instructions that are executing in
an online program. It is shown as a bar of color that highlights wires
that are connected together. You can define the color of power flow

using the Colors Option tab of program properties.

The state of a variable is shown as a solid block of color in the
contact. For positive transition contacts (PTI), the block of color is
shown when the contact is true, but power flow from the contact is
shown only during the scan where the transition is true. The same
concept applies to the negative transition contacts (NTI). The block
of color in an NTI is shown when the contact is false, but the power
flow from the contact is shown only during the scan in which the
transition is true.

Hatch marks in the rung status area identify rungs that are not
executing. For non-executing rungs, the power flow and last state
information you see are those from the last time the rung executed
since you started monitoring the online program. Factors causing
rungs not to execute are:

® They could be skipped via a Jump instruction.
® The program is executed based on an event.
® The program is stopped.

® The scan time of the program is very long.

5-5

5.5

5.6

5-6

Monitoring Data in an Online Program

While a program is running online, the data is displayed as follows:

® Forced variables are highlighted in the Forced Variable color,
defined via the Color Option tab of the Program Properties.

® Numeric values are displayed under the variable name. You can
define the data display format using the Variable Properties tab
for the variable but only in an offline program.

e Atimer’s elapsed value is displayed under the timer variable
name.

® A counter’s current value is displayed under the counter variable
name.

e [f the preset of a timer or counter variable is changed via logic,
the new preset value is displayed under the original preset value.

e For variables using element or bit-indexing, the display format is
that of the base variable. For example, if you specified variable
array to be displayed as decimal and the variable element to be
displayed in hexadecimal, the value of the variable array[element]
would be displayed in decimal.

® For element-indexed array variables (array[element]), the value
displayed is that of the element.

Accepting Changes Made to Online
Programs

After editing an online program, you must approve the changes
before the Editor can download them to the Processor by using the
Online menu’s Accept command. You can accept modified, added,
or deleted rungs either individually or as a group. You can also
reject any change. Rejected changes are not recoverable.

You do not have to accept changes to an online program that are
made through the Set/Force/Unforce dialog box or that caused the
initial value of a variable to be changed because these changes take
effectimmediately.

To accept or reject changes made to an online program

Step 1. When you are finished editing an online program, do one
of the following:

® Choose Accept from the Online menu

&

The first edited rung is highlighted and displayed along
with the Accept Online Changes Dialog box.

or

e Click on

Step 2. From the Accept Online Changes dialog box, perform
one of the following actions:

Choose
To: this Result:

button:
Approve the displayed | Accept The next edited rung is displayed
rung. for you to accept.
Approve all the rungs | Accept All The Commit Online Changes dialog
that you added, box is displayed. You can
deleted, or modified. immediately download the changes

to the Processor or temporarily
download the changes to the
Processor by placing the program
in Test Mode. See “Downloading
Changes Made to an Online
Program (Commit Online Chnges),”

section 5.7.
Discard the changes Reject The Editor returns the rung to its
made to the rung. original construction.
Cancel the Accept Cancel The Accept Online Changes dialog
process and return to box disappears. You can resume
editing the online editing the online program. Your
program. current modifications are
unaffected.
If you have accepted at least one rung, you can commit the change
or place the program in Test Mode. If not, you can resume editing
the program.
5.7 Downloading Changes Made to an Online

Program (Commit Online Changes)

After accepting added, deleted, or modified rungs, you must commit
the changes before the Editor can download them to the Processor.
You use the Commit Online Changes dialog box to do this. The
Editor automatically displays this dialog box after you have finished
accepting the changes made to an online program. You must have
accepted at least one online change for the Editor to display the
dialog box.

5-7

From the Commit Online Changes dialog box, you must choose
how to download the online changes to the Processor. You can
download the changes to the Processor by sending the changes to
the Processor and either:

e immediately install the changes in the program by selecting
Commit

e temporarily install the changes in the program by selecting Test
Mode

The changes are downloaded to the Processor as a group.

To download changes made to an online program (commit)

Step 1. Accept the changes to an online program. See
‘Accepting Changes Made to Online Programs,” section

The Editor displays the Commit Online Changes dialog
box.

Step 2. From the Commit Online Changes dialog box, choose
one of the following:

Choose
To: this Result:

button:
Send the accepted online Commit The online changes are verified. See
changes to the Processor ‘About How Changes Made to Online
and install them. Programs are Verified,” section 5.9,

for more information.

Once the changes are successfully
verified, they are downloaded to the

Processor.
Send the accepted online Test Mode | The online changes are verified. See
changes to the Processor ‘About How Changes Made to Online
and temporarily install Programs are Verified,” section 5.9,
them. for more information.

Once the changes are successfully
verified, they are temporarily
downloaded to the Processor. The
program is placed into Test Mode so
that you can see how your changes
perform before they are permanently
installed in the Processor. See
“Testing Programs (Test Mode),”
section 5.8, for more information.

Cancel the Commit process | Cancel The Commit Online Changes dialog
and return to editing the box disappears. You can resume
online program. editing the online program. Your

current modifications are unaffected.
When you are finished editing, you
must begin the Accept process again.

5.8

5.8.1

Testing Programs (Test Mode)

Selecting Test Mode from the Commit Online Changes dialog box
places the program in the Test Mode state, which provides you with
an opportunity to make sure that the changes you made work
properly before you permanently install them in the Processor. Once
a program is in Test Mode, you can:

e commit the online changes, which permanently installs the
program in the Processor (see section 5.8.1 for more information)

e take the program out of Test Mode, which allows you to resume
editing the program with your current modifications unaffected
(see section 5.8.2 for more information)

e cancel all changes

While a program is in Test Mode, you cannot make any changes to it
or download a configuration to a rack.

To place an online program in Test Mode

Step 1. Atfter editing an online program, choose Accept from the
Online menu.

Step 2. Accept the online changes.

Step 3. From the Commit Online Changes dialog box, choose the
Test Mode button.

The online changes are verified. See “About How Changes Made to
Online Programs are Verified,” section 5.9, for more information. If
the changes are successfully verified, they are installed in the
Processor. To make the changes permanent you must commit them.

Committing an Online Program in Test Mode
(Commit Changes in Test Mode)

Once a program is in Test Mode and you are satisfied with the
changes you made, you must commit these changes before they
can be installed permanently in the Processor. Use the Commit Test
Mode changes command from Online menu.

To commit save an online program in Test Mode
Step 1. Make sure the program is in an active program window.

Step 2. From the Online menu, choose Commit Test Mode
Changes. The Editor prompts you to confirm your
decision.

Step 3. To commit the changes, click Yes. Clicking No removes
the question dialog box, leaving the program unchanged.

Once the rungs are successfully committed, the Editor removes the
program from Test Mode and displays the rungs in the non-modified
rung color.

5-9

5.8.2

5.8.3

5-10

Removing an Online Program from Test Mode

If you want to continue making changes to an online program that is
in Test Mode, you must first take it out of Test Mode. You can do this
by using the Quit Test Mode command from the Online menu.
Taking a program out of Test Mode removes the changes from the
Processor. The modified rungs are no longer running on the
Processor; the original rungs are now executing.

IMPORTANT

If you delete a counter data structure as part of the online changes,
the counter has retained its value while the changes were in Test
Mode. When you remove the program from Test Mode, the counter
is storing a current value since the change that deleted the counter
was not accepted.

If you delete a timer data structure as you edit an online program,
the timer is reset when you remove the program from Test Mode
without accepting the online changes.

To remove an online program from Test Mode while retaining
pending changes

Step 1. Make sure the program is in an active program window.
Step 2. Do one of the following:

® From the Online menu, choose Quit Test Mode

The Editor prompts you to confirm your decision.

or

e Click on

Step 3. To remove the program from Test Mode, click Yes.
Clicking No removes the question box, leaving your
program in Test Mode.

The online program continues to display the modified rungs. You
can continue to make changes or cancel all the online changes. You
must accept added, deleted, or modified rungs before they can be
installed in the Processor again.

Canceling All Changes Made to an Online Program

You can cancel any pending changes made to an online program or
remove the program from Test Mode by using the Cancel All
Changes command. Pending changes are those that have not yet
been committed to the Processor. You cannot cancel changes to a
variable that resulted in setting, forcing, or unforcing it or changing
its initial value, since these changes take effect immediately.

To cancel all changes made to an online program

Step 1. Make sure the program is in an active program window.
The program can be in Test Mode.

Step 2. From the Online menu, choose Cancel All Changes. The
Editor prompts you to confirm your decision.

Step 3. To cancel the changes, click Yes. Clicking No removes
the question dialog box and leaves the online program
unchanged.

5.9

All pending changes are removed from the program. If the program
was in Test Mode, it is removed from this mode.

About How Changes Made to Online
Programs Are Verified

Once you commit any online changes after accepting the rungs, the
Editor verifies the changes before they are downloaded to the
Processor. The changes are verified using the same rules that are
used for offline programs. All accepted online changes must be
successfully verified before they are installed into a Processor.

When online program changes are verified, the Editor ignores
warnings and does not check against the Variable Configurator

database.

The Editor generates a log file only if you have selected the
Generate Log File verify option. For more information, see “Creating
a Verify Error Log File,” section 4.1.

If the program is not successfully verified, you must correct the
errors, re-accept the rungs, and commit the changes or enter test
mode. The Editor also notifies you when either of the following

events occur:

If this event occurs:

Do the following:

a global variable has been
defined in the program that
is notin the online
configuration

Step 1. Reject the changes contain-
ing the global variable(s).

Step 2. Commit any other changes.

Step 3. Go offline and add the new
global variable(s) to the
Variable Configurator data-
base.

Step 4. Load the configuration.

Step 5. Monitor the ladder program
again and add the logic
with the global variables.

Step 6. Accept and commit the

changes.

the amount of memory for
the accepted online
changes exceeds the
amount of memory
reserved for online
modifications

Increase the amount of memory
allotted for online modifications. See
“Specifying the Amount of Memory
Reserved for Editing a Program
Online” in Appendix D.

the online changes exceed
the allowed number of
variables, timers, counters,
or labels

Edit the program to correct the
limitation errors and re-accept the
program. See “Specifying the Amount
of Memory Reserved for Editing a
Program Online” in Appendix D.

Tip

You can use the Verify command to check your online changes

before you accept them.

5-11

5.10

5-12

Viewing an Online Program as It Looked
Before It Was Edited

While you are editing an online program and before you commit any
online changes, you can view the same program as it appeared
before you began making modifications. The Editor displays the
original program in a separate window. The text “(Original Program)”
printed before the file name in the window’s title bar helps you
identify the original program from the edited version. Use the Show
Original Program command to display an original version of the
program you are currently editing online.

To view an online program as it looked before it was edited
online

Step 1. Make sure the online-edited program for which you want
to view the original version is in the active online program
window.

Step 2. Do one of the following:

® From the Online menu, choose Show Original
program.

or

e Click on

In the Original Program window, power flow and rung numbers are
displayed as they appear in the online edited version. If a rung was
deleted, the corresponding rung in the Original Program window is
marked with a “D” revision mark and displayed using the color
defined for modified rungs.

The Editor updates the original program window with any changes
you make to the online program. For example, if you insert a rung in
the online program, the rung numbers in the original program are
updated. However, you cannot make any changes to the original
program; it is a read-only file.

When you cancel all changes made to an online program, this
program then matches the original version. When you commit
changes made to an online program, the Editor updates the version
displayed in the original program window to match the one in the
online program window.

5.11

Capturing the State of Logic in an Online
Program

While monitoring a program, you can freeze or capture the power
flow of a given rung using the Capture Trigger command from the
Online menu. When the trigger is activated (becomes true), the state
of the rung is captured and displayed. The rung’s power flow
information is not updated on the computer; however, it continues to
run on the Processor. The Editor obtains trigger information from the
Processor. You can capture a rung’s status based on one of the
following conditions:

® a coil turns on
® a coil turns off

® an error occurs with an instruction in a rung

If more than one coil exists, the coil used for the trigger is a rung’s
upper-right-most coil. Once a trigger is set, it is active on the next
program scan. Triggers are edge-sensitive. (For example, a coil-on
trigger is activated the next time that the coil goes true.)

Only one trigger can be set for a rung, but you can set multiple
triggers in an online program. The only limitation is the amount of
available Processor memory.

Triggers are local to the computer that set the trigger. Other online
connections cannot view these triggers until they are activated.

A trigger remains set as long as the rung is displayed in the online
program window. Once the triggered rung scrolls off the screen, the
trigger is cleared. Also, closing an online program window clears all
the triggers set in the program.

Rungs that have triggers set are indicated by a letter displayed in
the rung status area representing the trigger type, either an “o0”, “f,
or “e”. When a trigger is activated, this indicator is replaced by a “T.”
If a rung is marked by a revision mark, the trigger indicator replaces
the revision mark until the trigger is cleared.

This table summarizes some points to keep in mind if you set
triggers on rungs that already contain a trigger.

If a rung already has a trigger set Then the Editor:
and you:

® modify the rung, or clears the trigger
e scroll the rung off the screen, or

® close the program window

select the same trigger type for anew | resets the trigger
trigger

select a different trigger type for a clears the current

new trigger trigger and assigns
the new trigger to the
rung

The Editor notifies you when another online connection has set a
trigger for the same rung.

5-13

5.11.1

5.11.2

Capturing the State of Logic Based on a Coil
Becoming True

You can freeze the power flow of a rung based on its
upper-right-most coil turning on (becoming true). You use the Coil
On command from the Capture Trigger menu. When a rung has a
Coil On trigger set, the rung is marked with a letter “0” in the rung
status area.

To set a Coil On trigger

Step 1. Select the rung or at least one instruction in the rung for
which you want to set a trigger. See “Selecting Rungs,”
section 2.2, or “Selecting Instructions,” section 2.7, for
more information.

Step 2. From the Online menu, select Capture Trigger. Move the
mouse to the right to display the Capture Trigger menu.

Step 3. From the Capture Trigger menu, choose Coil On.

When the coil goes true, “T” is displayed in the status area and
power flow stops updating. The state of the rung when the coil went
true is displayed until the trigger is reset or cleared.

Capturing the State of Logic Based on a Coil
Becoming False

You can freeze the power flow of a rung based on its
upper-right-most coil turning off (becoming false). You use the Coil
Off command from the Capture Trigger menu. When a rung has a
Coil Off trigger set, the rung is marked with a letter “f” in the rung
status area.

To set a Coil Off trigger

Step 1. Select the rung or at least one instruction in the rung for
which you want to set a trigger. See “Selecting Rungs,”
section 2.2, or “Selecting Instructions,” section 2.7, for
more information.

Step 2. From the Online menu, select Capture Trigger. Move the
mouse to the right to display the Capture Trigger menu.

Step 3. From the Capture Trigger menu, choose Coil Off.

When the coil goes false, “T” is displayed in the status area and
power flow stops updating. The state of the rung when the coil went
false is displayed until the trigger is reset or cleared.

5.11.3

5.11.4

5.11.5

Capturing the State of Logic Based on a Rung Error

You can freeze the power flow of a rung based on a run-time error
occurring within the rung. Run-time errors may be those caused by
an instruction. You use the Rung Error command from the Capture
Trigger menu. When a rung has a Rung Error trigger set, the rung is

marked with a letter “e” in the rung status area.

To set a Rung Error trigger

Step 1. Select the rung or at least one instruction in the rung for
which you want to set a trigger. See “Selecting Rungs,”
section 2.2, or “Selecting Instructions,” section 2.7, for
more information.

Step 2. From the Online menu, select Capture Trigger. Move the
mouse to the right to display the Capture Trigger menu.

Step 3. From the Capture Trigger menu, choose Rung Error.

When a run-time error occurs for an instruction in a rung, “T” is
displayed in the status area and power flow stops updating. The
state of the rung when the error occurs is displayed until the trigger
is reset or cleared.

Waiting for Triggers While Continuing To Edit

You can wait for triggers while continuing to work with the Editor.
After setting any triggers, you can minimize the program’s window
or open a new window for the program.

You can also display triggers in a program using two computers.
Use one computer to set and display the triggers for an online
program while using another computer to monitor the program,
including scrolling through the same online program.

Re-Activating a Trigger

You can reset an activated trigger on a selected rung. This
re-initializes a rung’s frozen trigger.

To re-activate a trigger

Step 1. Select the rung or at least one instruction in the rung
containing the trigger you want to reset. See “Selecting
Rungs,” section 2.2, or “Selecting Instructions,” section
2.7, for more information.

Step 2. From the Online menu, select Capture Trigger. Move the
mouse to the right to display the Capture Trigger menu.

Step 3. From the Capture Trigger menu, choose Reset Trigger.

5-15

5.11.6 Clearing a Trigger

You can remove a set trigger for a selected rung. Once the trigger is
removed, the rung’s status area returns to the state it was in prior to
the trigger being set.

To clear a trigger

Step 1. Select the rung or at least one instruction in the rung
containing the trigger you want to remove. See “Selecting
Rungs,” section 2.2, or “Selecting Instructions,” section
2.7, for more information.

Step 2. From the Online menu, select Capture Trigger. Move the
mouse to the right to display the Capture Trigger menu.

Step 3. From the Capture Trigger menu, choose Clear Trigger.

The Editor also clears triggers when the selected rung is scrolled
out of view on the screen or when an online program is closed.

5.12 Setting and Forcing Variables in Ladder
Programs

You can set and force variables in ladder programs to put them
temporarily in a known state for debugging purposes. To set, force,
and unforce variables, you must have an online program window
open. You can set or force any global variable in the configuration or
any local variable present in a task that is loaded into the rack.

IMPORTANT

You can force only simple variables. You cannot force
element-indexed or bit-indexed variables. For example, you cannot
force variables like: vat.13, array_var[11], array_var[index_name],
array_var[11].12, or array_var[index_name].bit_name.

WARNING

THE SET AND FORCE FUNCTIONS BYPASS CONTROL OF THE APPLICATION
PROCESS BY THE APPLICATION PROGRAMS. IT IS THE RESPONSIBILITY OF
THE USER TO DETERMINE THE POTENTIAL HAZARDS INVOLVED. FAILURE TO
OBSERVE THESE PRECAUTIONS COULD RESULT IN BODILY INJURY.

WARNING

VARIABLES AND OUTPUTS THAT ARE FORCED BEFORE AC POWER IS LOST
WILL REMAIN FORCED WHEN AC POWER IS RESTORED. SHOULD AC POWER
BE LOST WHILE VARIABLES ARE FORCED, THE USER MUST ENSURE THAT
UNEXPECTED MACHINE MOVEMENT DOES NOT OCCUR WHEN AC POWER IS
RESTORED. FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN
BODILY INJURY.

5-16

About Setting a Variable

To set a variable is to write a value to it that can be over-written by
an instruction in the same program, another program referencing
the same variable, or an external device if the variable is mapped to
an input. It is possible for a variable that is set to be over-written on
the next scan of the program. Forced values cannot be set.

The Editor stores and displays up to 64 set variables for the current
editing session. The Editor does not store the list of set variables
after the current editing session has been completed. When you set
a variable, it is added to the bottom of the list. Once the 65th
variable is added to the set list, the variable present at the top of the
set list is removed from the list. Duplicate entries are removed from
the list.

When setting variables that use variable initialization, keep these
points in mind:

e Setting a variable using Retained Value initialization modifies the
variable’s retained value, and this value becomes its new initial
value.

e Setting a variable using User Specified Value initialization
changes the variable’s current value but not its initial value.

About Forcing a Variable

To force a variable is to write a value to it that cannot be over-written
by an instruction or another program referencing the same variable.
Only unforcing the variable permits its value to be changed. Up to
64 variables can be forced. Forced variables are stored on force
pages, a maximum of four, each containing 16 variables.

About the Set/Force/Unforce Dialog Box

Both setting and forcing operations for ladder programs are
selected from the Set/Force/Unforce dialog box. This dialog box can
be displayed in both a basic and an expanded form and is
associated with only one rack connection at a time. When you
choose the Set/Force/Unforce option from the Online menu, the
basic Set/Force/Unforce dialog box is displayed. This basic dialog
box takes up less room on the screen than the expanded dialog box
so that you can view more of your program. The expanded dialog
box takes up more room, but has more options.

You can switch back and forth between the basic and expanded
dialog boxes using the More button in the basic dialog box and the
Less button in the expanded dialog box.

To set, force, or unforce variables, you must have an online program
window open. The same Set/Force/Unforce dialog box is used for
each online program window using the same rack connection.
Opening a program window using a different rack connection
disables all fields on the Set/Force/Unforce dialog box, except the
force list, that applied to the previous rack connection. Only the
force list is actively updated on the Set/Force/Unforce dialog box for
the online program window(s) using the previous rack connection.
You can unfreeze this dialog by activating the online window that is
used for the other rack connection. If you choose the
Set/Force/Unforce command from the online program window with
the new rack connection, the Set/Force/Unforce dialog box is
updated to reflect the information for the new connection.

517

5.12.1

5-18

When you select an offline program window or the Verify output
window, the Set/Force/Unforce dialog box remains in its current
state.

Setting Variables

To set a variable is to write a value to it that can be over-written by
any of the following:

® an instruction in the same program

e another program referencing the same variable

® by an external device if the variable is mapped to an input

You can set any global variable in the configuration or any local
variable present in a task that is loaded into the rack.

To set a variable
Step 1. Make sure an online program window is open.
Step 2. Do one of the following:

e Click on

or
e From the Online menu, choose Set/Force/Unforce.

The Set/Force/Unforce Variables dialog box is displayed.
You should keep this dialog box open while you are
setting, forcing, or unforcing multiple variables.

Step 3. If you want to set a local variable, enter the name of the
program in which the variable is used in the Program
field. If the variable is a global one, leave the field blank.

Step 4. Enter the name of the variable to be set. Only simple
variables and array elements can be set.

If you had a simple variable selected before you chose
the Set/Force/Unforce command, this variable is the
default. If no variable was selected, the last variable set,
forced, or unforced is the default.

Step 5. In the Value/State field, enter the value or state to set.

For Boolean variables, the valid range is on, off, true,
false, T, F, 1, or 0. You can enter either decimal or
hexadecimal values for non-Boolean variables.

Step 6. Click Set to set the variable.

Note: A value displayed in the Value/State field is the last value set; it
is not the current value. The value in this field is not monitored.

Tip

To quickly fill in the Program and Variable Name field for a local
variable you want to force, select the variable in the program before
choosing the Set/Force/Unforce command. Selecting a global
variable in the program before choosing the Set/Force/Unforce
command fills in the Variable Name field in the Set/Force/Unforce
dialog box.

5.12.2

Tip
Selecting a variable from the Set Variables List fills the parameters

within the Current Selection group box with the information for the
variable.

Forcing Variables

To force a variable is to write a value to it that cannot be over-written
by another program referencing the same variable. You can force
any simple global variable in the configuration or any simple local
variable present in a task that is loaded into the processor. Only
unforcing a variable permits it to be changed by a program or an
external device.

IMPORTANT

You can force only simple variables. You cannot force
element-indexed or bit-indexed variables. For example, you cannot
force variables like: vat.13, array_var[11], array_var[index_name],
array_var[11].12, or array_var[index_name].bit_name.

To force a variable
Step 1. Make sure an online program window is open.
Step 2. Do one of the following:

e Click on

or
® From the Online menu, choose Set/Force/Unforce.

The Set/Force/Unforce Variables dialog box is displayed.
You should keep this dialog box open while you are
setting, forcing, or unforcing multiple variables.

Step 3. If you want to force a local variable, enter the name of the
program in which the variable is used in the Program
field. If you want to force a global variable, leave the field
blank.

Step 4. Enter the name of the variable to be forced.

Only simple variables can be forced. The simple variable
selected before choosing the Set/Force/Unforce
command is the default. If no variable was selected, the
last variable forced is the default.

Step 5. In the Value/State field, enter the value or state to force.

For Booleans, enter true, false, T, F, on, off, 1, or 0. You
can enter either decimal or hexadecimal values for
non-Boolean variables.

Step 6. Select the force page (1-4) on which to store the variable
using the arrows in the Force Page field.

Specifying the force page lets you control how forced
variables are grouped. Variables grouped on one force
page can be unforced at the same time.

Step 7. Click Force to force the variable.

Forced variables change to the color you specified on the Colors
tab. The default color for forced variables is red.

5-19

5.12.3

5-20

Tip

To quickly fill in the Program and Variable Name field for a local
variable you want to force, select the variable in the program before
choosing the Set/Force/Unforce command. Selecting a global
variable in the program before choosing the Set/Force/Unforce
commeand fills in the Variable Name field in the Set/Force/Unforce
dialog box.

Tip
Selecting a variable from the Force Variables List fills the parameters

within the Current Selection group box with the information for the
variable.

Tip
You can also view the force table in the Expanded
Set/Force/Unforce dialog box.

Unforcing Variables

Unforcing a variable allows it to be written to by any of the following:
e another instruction in the program

® another program

® an external device if the variable is mapped to an input

You can unforce any global simple variable or any local simple
variable present in a task that is forced.

To unforce a variable from the Variables dialog box

® [n the Set/Force/Unforce Variables dialog box, enter the variable
and click Unforce. The selected variable must already be forced
before you can unforce it.

To unforce a variable
Step 1. Make sure an online program window is open.
Step 2. Do one of the following:

e Click on

or

e From the Online menu, choose Set/Force/Unforce.

The Set/Force/Unforce Variables dialog box is displayed.
You should keep this dialog box open while you are
setting, forcing, or unforcing multiple variables.

Step 3. If you want to unforce a local variable, enter the name of
the program in which the variable is used in the Program
field. If you want to unforce a global variable, leave the
field blank.

Step 4. Enter the name of the variable to be unforced. Only
simple variables can be forced. The simple variable
selected before choosing the Set/Force/Unforce
command is the default. If no variable was selected, the
last variable set, forced, or unforced is the default.

Step 5. Click Unforce to unforce the variable.

Variables grouped on one force page can be unforced at the same
time. See “Unforcing an Entire Force Page,” section 5.12.7.

Tip
Selecting a variable from the Force Variables List fills the parameters

within the Current Selection group box with the information for the
variable.

5.12.4 About the Expanded Set/Force/Unforce Dialog Box

Additional options not available in the basic Set/Force/Unforce
Variables dialog box can be displayed by clicking More in the dialog
box. Use the resulting expanded dialog for:

® Viewing the Total Number of Forced Variables
® Viewing a List of Set or Forced Variables
e Unforcing an Entire Force Page

You can toggle back and forth between the basic and expanded
dialog boxes using the More and Less buttons.

5.12.5 Viewing the Total Number of Forced Variables

The Forced Variables group in the expanded Set/Force/Unforce
variables dialog box allows you to view the total number of forced
variables (Total Forced), which can be a maximum of 64. The total
forced is useful if you want to force a large number of variables and
need to keep track of how many more you can force or need to
determine if forced variables are present on other force pages.

5.12.6 Viewing a List of Set or Forced Variables

You can view a list of set or forced variables in the list box of the
expanded Set/Force/Unforce dialog box.

To view a list of set or forced variables
Step 1. Make sure an online program window is open.

Step 2. From the Online menu, choose Set/Force/Unforce. The
Set/Force/Unforce dialog box is displayed.

Step 3. Click More.

Step 4. In the expanded Set/Force/Unforce dialog box, click Set
Variables or Forced Variables. The list of variables for this
edit session is displayed in the List box. Up to 64 set
variables are displayed on a set variables list. Up to 64
variables are stored on a forced variables list (16 per
force page). You can view only one page at a time.

5.12.7 Unforcing an Entire Force Page

You can unforce an entire page of forced variables. This option is
useful when you have grouped related forced variables together on
one page.

To unforce an entire force page
Step 1. Make sure an online program window is open.

5-21

5.12.8

5.13

5-22

Step 2. From the Online menu, choose Set/Force/Unforce. The
Set/Force/Unforce dialog box is displayed.

Step 3. Click More.

Step 4. In the expanded Set/Force/Unforce dialog box, use the
Current Page field to choose the force page you want to
unforce.

Step 5. Click Unforce Page. The entire page is unforced.

Testing If Variables in the Rack Are Forced

Programs that are running can test if any variables in a rack are
forced. The logic can access the reserved global variable
FORCINGSTATUS@. This variable will be true if any variables in the
rack are forced.

Viewing and Clearing Run-Time Errors

You can view any run-time errors that occur in an online program
that you are monitoring. Use the Error Log to view error messages
from the task information log. You can access this log from the
Program Properties. The error log records the first, second, and last
(most recent) error that occurred in the program. The last error
number and its text message is displayed along with the rung
number in which the error occurred. Information about any bus
errors (Error 31) is also displayed.

For specific information about run-time error codes, see the
AutoMax Enhanced Ladder Language Reference Manual, J2-3094.

To view run-time errors

Step 1. Make sure the online program for which you want to view
run-time errors is the active program.

Step 2. Access Program Properties dialog box in one of following
ways:

® With no program items selected, choose Properties
from the File menu.
or

e With no program items selected and the mouse
pointer resting on the grid area away from any
instructions or wires, press the right mouse button to
display the pop-up menu. From the pop-up menu,
choose Properties.

Step 3. Choose the Error Log tab.

To clear the error log

Step 1. Access the Error Log tab from the Program Properties
dialog box. See step 2 above for more information.

Step 2. Click Clear Errors.
Step 3. Click OK.

Appendix A

Toolbars, Palettes, and the Status Bar

A.1 About the Standard Toolbar

The Standard toolbar contains shortcut buttons to many menu commands, such
as cut, copy, paste, save, and print. It is located by default at the top edge of the
program window, but you can move it to another location. By pausing the
pointer over a toolbar button, you can display a brief description of the button.

You can choose to display or hide the toolbar by choosing Toolbars/Palettes
from the View menu and selecting or deselecting Standard.

As a shortcut for: Click this button:

Opening a program

Saving a program

Printing a program

Cutting an object

]] |[2] |[w

Copying an object

E

Pasting an object

Finding a variable or instruction

Verifying a program

Listing program variables and properties (Variable List) ¥

Changing the display size of a program (Zoom)

Accepting changes to an online program

Connecting online to a Processor

A-1

As a shortcut for:

Click this button:

Quitting test mode

&

Setting/Forcing/Unforcing a variable

2

Showing the original copy of an online program

o

Pausing an online program

W

Accessing context-sensitive help

L

A-2

A.2 About the Ladder Language Toolbar

The Ladder Language toolbar provides access to the instruction palettes. Each
button on the toolbar provides access to a certain group of instructions, such as
relay or arrays. It is located by default under the Standard toolbar, but you can

move it to another location.

You can choose to display or hide the toolbar by choosing Toolbars/Palettes
from the View menu and selecting or deselecting Ladder Language.

By pausing the pointer over a button, you can display a brief description that
identifies the instruction palette associated with the button.

To access these instructions:

Click on this button:

relay

4t

timers and counters

@

shift and move instructions

3
1011

comparison =
math [

+
array

]

program control, immediate input and
output, and I/O read and write

A3

You access an instruction palette by pointing and clicking on a Ladder
Language toolbar button. Once the instruction palette is displayed, you drag
instructions from it and insert them into a program. Instructions that perform
similar operations are grouped together on a palette. For example, all relay
instructions are grouped together on the relay palette.

About the Instruction Palettes

If you frequently use instructions from a particular palette, you can choose to
keep it open. You can then just choose an instruction and drag it into your
program without having to click on the ladder toolbar palette. You can move
opened palettes into the program area where it becomes a floating palette or
anchor them along any screen area’s edge.

The available palettes are:

Relays
® Normally Open Contact (NOI) ® Always False Contact (AFI)
® Normally Closed Contact (NCI) e Coil (CO)
® Positive Transition Contact (PTI) e Set (Latch) Coil (SCO)
® Negative Transition Contact (NTI) ® Reset (Unlatch) Coil (RCO)
® Always True Contact (ATI)

Timers/Counters
e Timer On Delay (TON) ® Retentive Timer On (RTO)
e Timer Off Delay (TOF) ® Count Up Down (CTUD)

e Timer Pulse (TP)

Shift/Move
e Shift Left (SL)
Shift Right (SR)

o
e Circular Rotate Bits Left (ROL) Double Integers (MVB)
o

e Circular Rotate Bits Right (ROR)
® Move Bits Between Integers and

Circular Rotate Bits Left on ® Move Source Data to Destination
Transition (RL) (MOVE)
e Circular Rotate Bits Right on ® Masked Move (MVM)

Transition (RR)

Comparison
e Equal To (EQ) ® Less Than (LT)
® Greater Than Or Equal To (GE) ® Limit (LIMIT)
® Greater Than (GT) ® Mask Compare (MSK)
® Less Than Or Equal To (LE) ® Not Equal To (NE)

A-3

A-4

Math

® Absolute Value (ABS) e Subtract (SUB)
e Add (ADD) ® |ogical AND (AND)
e Divide (DIV) ® Logical NOT (NOT)
® Modulo (MOD) ® Logical OR (OR)
e Multiply (MUL) ® |ogical Exclusive XOR (XOR)
e Multiply Divide (MDV) ® Convert Integer Data to BCD
® Negate (NEG) {TO_BCD)
® Square Root (SQRT) ® Convert From BCD to Integer Data
(BCD_TO)
Arrays
® Unary Array Operations (AR1) ® Array Shift Down (ASD)
® Multi-Array Operations (AR2) ® Array Shift Up (ASU)
e Array Compare (ARC)
Miscellaneous
® Set Event (SET) ® [/O Write (IOW)
e Jump (JMP) ® |Immediate Input (IN)
e Label (LBL) ® |Immediate Output (OUT)
® [/O Read (IOR)

A4 Moving Toolbars and Palettes

You can move the standard and ladder language toolbars and the instruction
and paste palettes from their default position to any location to suit your working
style.

You can move a toolbar or palette to any edge of the screen where it becomes
anchored at the new location. You can also move a toolbar or palette into the
program window where it becomes a floating toolbar, which you can move and
close like a window.

To move a toolbar or palette

Step 1. Place the pointer on any space between the buttons of the toolbar or
around the toolbar or palette.

Step 2. Press down the left mouse button and drag the toolbar or palette away
from its current location. The toolbar or palette becomes an outlined
box.

Step 3. Move the toolbar or palette to any screen edge or to a location within the
program window and release the mouse button.

When you: The toolbar or palette
becomes a:

anchor a toolbar or instruction palette | vertical toolbar or palette
at the left or right edge of the screen

anchor a toolbar or instruction palette | a horizontal toolbar or palette
at the top or bottom of the screen

move the toolbar or palette to a a floating toolbar or palette
location inside the program window

To anchor a floating toolbar or palette

Step 1. Place your pointer on the edge of the toolbar or palette and press the
left mouse button.

Step 2. Drag the toolbar or palette to any edge of the screen and release the
mouse button.

Tip

Close a floating toolbar or palette by clicking on i] , located in the upper
right-hand corner of the toolbar or palette.

Tip

If you move a toolbar or palette out of the program window or just want to

restore the toolbars and palettes to the Editor’s default, click on the Restore
Defaults button in the Toolbar and Palette dialog box.

A.5 About the Status Bar

The status bar is located at the bottom of the Editor window and displays
information about the program objects you have selected and the state of the
program in the active window. Look at the status bar for helpful messages as
you work with your programs.

ForHelp, press F1

Verified

For the active program window, the status bar displays VERIFIED when the
program has been successfully verified and is ready for loading in to the
Processor.

Not Verified

If the program has not been successfully verified or changes have been made to
it since the last verify operation, the status bar displays NOT VERIFIED.

Run or Stop

For the active, online programs, the status bar shows if the program is running
(RUN) or stopped (STOP).

Help for the Selected Menu

The status bar shows abbreviated help for the selected menu item in the active
window.

A-5

Name and Description of Selected Object
For the active window, the status bar can display any of the following:

If this is selected:

Status bar displays the:

single contact or coil

associated parameter and the primary variable description

single block

parameter and description for the primary output

single rung

first line of the associated rung description

A-6

Appendix B
Keyboard Shortcuts

Here is a listing of keyboard shortcuts for the Editor.

To:

Do the following:

Open a program

Press CTRL+0O

Save a program

Press CTRL+S

Print a program

Press CTRL+P

Access properties for a program item

Press F2

Rungs, instructions, and variables
must be selected first

Move to the next field

Press TAB

Move to the previous field

Press SHIFT+TAB

Select all the rungs in a program

Press CTRL+A

Cut rungs, instructions, or text

Select the item(s) to be cut and press
CTRL+X

Copy rungs, instructions, or text

Select the item(s) to be copied and
press CTRL+C

Paste text

Press CTRL+V

Paste rungs or instructions

Press CTRL+V Drag the logic from
the Paste Palette

Clear rungs, instructions, or text

Select the item(s) to be cleared and
press DEL

Goto arung Press CTRL + G
Turn on Rung Descriptions Only Press F5
Access the Zoom dialog box Press F7

Access the Find dialog box

Press CTRL+F

Access the Replace dialog box

Press CTRL+R

Find the next match

Press SHIFT+F4

Find the previous match

Press SHIFT+F5

Access the Online Task Manager Press F9

Monitor a PC program Press F10

Quit Test Mode Press CTRL+Q
Access the application window Press ALT+Spacebar

control menu

Access the program control menu

Press ALT+ — (dash)

Close the active window

Press CTRL+F4

Switch to the next program window

Press CTRL+F6

Close the Editor

Press ALT+F4

B-1

Appendix C

Using the Pre-Defined (Reserved) Ladder
Language Variables
The Editor contains pre-defined variables that you can use in an individual
ladder program to:
® execute logic based on a Processor scan
® specify how to handle error conditions

® check scan time execution

The pre-defined ladder language variables are local variables, which you can
use for ladder instruction parameters. Their names are reserved and appear in
the choices offered by the Variable Smart Matching option.

Using the Pre-Defined Program Scan Variables

Use the following Boolean variables to execute logic based on the Processor’s
scan. Only use these variables for input parameters (read-only):

e first_scan Use this variable to execute logic during a program’s
first scan. This variable is true during the initial scan
of the ladder rung and false during all other scans.

® second_scan | Use this variable to execute logic during a program’s
second scan. This variable is true during the second
scan of the ladder rung and false during all others.

® |ast scan Use this variable to execute logic during a program’s
last scan. This variable is true on the final pass of the
ladder rung after you have selected TASK STOP. This
variable is not set when a STOP ALL error occurs.

To use the last_scan variable, your program scan
must be less than 0.5 seconds.

IMPORTANT

Do not use the last_scan variable in an event-driven
program. Because these programs are based on the
occurrence of an event, the last_scan variable may
never be executed when used in an event-driven
program.

C-1

Using the Pre-Defined Error Handling Variables

Use the following Boolean variables to help you handle error conditions. Use
error_eno and no_error_log for output (read and write) parameters. You can use
task_error as either an input (read-only) or output (read and write) parameter:

® task_error This variable is set true whenever an error is found.
Monitor the bit to see if an error occurs during execu-
tion and clear it by using the ladder logic. This bit is
set true even if errors are not being logged.

® error_eno Use this bit to determine the value ENO outputs will
have if the instruction has an error. The default value
is false, which disables any instructions that are con-
nected to the ENO output, possibly making math
expressions incomplete. When you set error_eno
true, you can continue the execution of the logic con-
nected to the ENO output even if the instruction
block had an error.

This variable can be changed during ladder logic
program execution.

® no_error_log | Set this variable true to prevent errors from being
entered into the program error log or being seen by
the rung monitor. Only one error is logged for each
instruction per program scan; however, you may
want to prevent the errors encountered on certain
instructions from being entered into the error log.

The default state for the no_error_log is false. You
can suppress error messages for a group of rungs
by changing this variable during program execution.
STOP ALL errors and parameter limit errors for AR1,
AR2, and ARC instructions are still inserted into the
error log when the no_error_log variable is true.

Using the Pre-Defined Ladder Execution Time Variables

Use the following double integer variables to help you check and monitor the
program'’s execution time. Only use these variables as input parameters.

® task_usec_max | Use this variable to monitor the maximum execution
time (in ps) for the current program.

® task_usec_now | Use this variable to monitor the latest execution time
(in us) of the current program. The execution time is
the real “clock” time it took the program to run from
start to finish. It includes the execution time for higher
priority programs and interrupt service routines if
they run while your program is running.

To reset these times, write a value of 0 into the variable.

C-2

Appendix D
Online Editing Memory Limits

Limits exist for the amount of memory reserved for editing programs online. The
Editor reserves a default 4096 bytes for editing programs online. However, you
can change the amount of memory reserved for online editing. See “Specifying
the Amount of Memory Reserved for Editing a Program Online” in this Appendix
for more information.

Each rung that was modified or added during an online editing session is
checked against the allocated amount of reserved memory when you commit
the changes or enter test mode (that is, when you download the rungs to the
Processor). If the total number of online changes exceeds the allocated memory,
a message box appears to notify you. To continue editing a program online once
these limits have been exceeded, save the program to the PC and re-download
it to the Processor.

Limitations for Editing Programs Online
You cannot add more than:

® 32 variables

® 8 timers and/or counters

® 16 labels

These limits are checked after you choose Accept from the Online menu. If the
changes exceed any limit, the Editor notifies you of the location at which the
problem(s) occurred. The changes are not downloaded to the Processor. You
can then edit the program to correct the limitation errors and re-accept the
program.

Restrictions for Editing Programs Online

While editing a program online you cannot add these types of variables:
® a global variable that is not already used in the configuration
® new or existing array variables

® an element of an array that is larger than the defined Maximum Array
Index

® new Software Events
Other restrictions for editing programs online:

® You can change all the properties for a newly added variable, but you
cannot add or change a variable description.

® You cannot inline edit variable or rung descriptions.
® You cannot change any Program Properties.

Some instructions use internal buffers to perform their operation. Consequently,
the state of the following instructions’ operation is stored from program scan to
program scan:

® Counter instruction (CTUD)
® Array instructions (AR1, AR2, ARC, ASU, ASD)
e Shift Register instructions (SL, SR, RL, and RR)
e Set Event instruction (SET)

During online editing, the state information is only transferred if you have not
added, moved, modified, or deleted any of the instructions. The Editor warns
you when state information is not transferred.

D-1

Specifying the Amount of Memory Reserved for
Editing a Program Online

You can increase or decrease the amount of memory reserved for changes
made to an online program by using the Program Info tab of the Program
Properties. You must change the program’s properties in an offline editing
session of the program. The maximum amount of memory you can reserve is
20480 bytes; the minimum is 2048 bytes.

To specify the amount of memory reserved for editing a program online
Step 1. Make sure you are editing the program offline.

Step 2. Access the Program Properties. See "About Program Properties.”

Step 3. From the Program Info tab, enter the amount of bytes you want to
reserve for online changes in the Online Reserved Memory field. Enter
a value between 2048 bytes and 20480 bytes. The default amount is
4096 bytes.

Step 4. Click OK to accept the change.

D-2

Appendix E

Rung Execution Order

In a ladder logic program, the rungs are executed from the top to the bottom.
Within a rung, instructions are executed left to right until a branch is
encountered. Therefore, in a program without branches, the instructions are
executed left to right in a rung, with the first rung being executed first and the
last rung executed last.

Keep in mind that using JMP instructions within a ladder program changes the
rung execution sequence. For more information about using the JMP and LBL
instructions, see the AutoMax Enhanced Ladder Language Reference manual,
J2-3094.

Using branching techniques in a rung changes the sequence in which the
instructions are executed. Parallel branches are executed from the bottom up.
This means that the bottom branch is executed first and the top branch last.
How branches are executed are listed below:

Branching technique #1:

Connecting contacts or block instructions acting as inputs in parallel (OR
condition)

q h
(] L I
1] L}]
i
(] L
I'Irl
| k
(] L I
1 I L}]
1
(] L
1 I
aEk
Out=Inl | InZ
EN ENQ
inl out
Inl Out
in&
Inz

How the branches are executed:
How parallel branches of input instructions execute depend upon whether:

® The relay input instructions use simple variables, bit—indexed integer,
double integer variables, or element—indexed array variables

® Block instructions are used in a parallel branch
This table summarizes how parallel branches of inputs are executed:

E-1

If a parallel branch
contains:

The instructions are executed as follows:

relay input instructions
using simple variables

The logic is executed starting at the last parallel
branch and going up the branches until a true
row is encountered. Once a true row is
encountered, any branches remaining above
the true branch will not be executed.

relay input instructions,
bit-indexed integer or
double integer variables, or

All parallel branches are executed, starting with
the last branch and working up the parallel
branches.

element-indexed array
variables

E-2

Branching technique #2:

Connecting a logical sequence of instructions composed of inputs and an
output in parallel to a rung

d

]

4

]

How the branches are executed:

Parallel branches made up of a sequence of instructions composed of inputs
and an output are executed as follows:

® Each branch is fully executed before the main rung

e Multiple parallel branches are executed from the bottom up
Branching technique #3:
Connecting one or more coils parallel to a rung

oot 3

e

How the branches are executed:
Parallel branches comprised of coils are executed as follows:

® Logic preceding the branched coil is executed, followed by the branched
coils. The bottom coil of the branch is executed first and the top coil of the
branch is executed last.

® Once the branched coils have been executed, the remaining logic of the
main rung is executed.

Programming Techniques

The relay output instructions (coils) and the outputs of block instructions are set
when the instruction is executed. Therefore, if a variable is used as an input and
as an output within the same program, you can use a more recent value for the
input if the output instruction is executed first. For example, the variable motor_1

used on the NOI instruction will contain a more recent value, since motor_1 of
the coil is executed first. The motor_1 output is set upon execution.

W motor_1
{ /| - {)
motor_1 H 0
{ | - { /1 - {)

However, do not create a rung where the same variable is used on an input and
an output, and the output is executed first. Creating such a rung results in a
verify error. The following figure shows such a rung:

-

The following figure illustrates how rungs and parallel branches are executed.

E-3

13 Rung 1 1s the first rung in the program to be executed.

a b c d
| | 1 /1 | | {]
23 Rung 2 is the second rung to be executed.
e f
| | {]

33 Rung 3 s executed next. Instuction i is executed first followed by g, iF 1
is not true. When i is true, g is skipped and coil h s then executed.

d h

i | {)]

5
1 /1

43 Rung 4 1s executed fourth. The parallel branch comprised of instructions j, 1
and the GT instruction are all executed; the GT dnstruction is executed first,
followed by j and then 1

J
] L
1 I
GT
O=(Inl=Inz>In3)
EN 2 e —————
input_1
_|Inl 0
input_2
_|In2
| In3

5) Rung 5 s executed next. This rung is an example of how you can use a
wvarighle as an output in a parallel branch and then as an input to the branch
ahove. The ADD block 15 executed first followed by the MUL Anstruction. Since
output kk is updated after the DD dnstruction executes, the newly updated walue
is used in the MUL dnstruction.

MUL
Out=In1*Inz2
EN o —
xx zz
_JIn Out)
leke
| InZ
ADD
Out=Inl+In2+In3
EN ENG ——————
bp lele
Inl Out |
rr
_1InZ
_{In3

6) Rung 6 is executed Tast. The dnstructions are executed in this order: y, z,
W, X, M, N, 0.

m n [a]
i | 1 /1 {]
- x
1 /1 {1}
¥ r.d
1 | {)

E-4

]

Appendix F

Converting Ladder Programs Created

Using an Older Version of AutoMax

You must convert any ladder program that was created using an AutoMax
Executive earlier than V4.X before you can edit it using the V4.X ladder editor
and the enhanced ladder instruction set. Once you convert the program, you
cannot use it with an earlier PC editor.

You can convert ladder programs by doing any of the following:

selecting a pre-V4.0 system from the System Configurator
copying a system, section rack or program

opening a program from the Editor

See “Opening Programs,” section 1.2.

The software prompts you to convert the system, which includes converting old
ladder programs. Any conversion warnings are posted in a log file. If the
programs are converted when a system, section, or rack is converted, the
warnings are placed in the file UPDATE.LOG. If you convert an individual
program from the Editor, the warnings are placed in the file program_name.LOG.
You can find UPDATE.LOG in the system directory, and program_name.LOG in
the rack directory.

At the dialog box prompting you to convert the program, choose Yes. The Editor
does the following:

replaces the old ladder instructions with the corresponding ones from the
enhanced ladder instruction set

converts any remark sequences into a rung consisting of one coil

The coil names are those of the keywords from the old remarks. These
new variables are local variables. The remark text becomes the rung
description for the new rung. Any tabs in the remark sequences are
converted to single space characters.

copies any variable description text to the new program and truncates the
text to 40 characters

renumbers the rungs starting at number one
preserves any preset values for timers and counters

creates new timer and counter data structures by using the variable name
of the current timer or counter value as the name of the new timer or
counter data structure

The EN input of the new counter instruction is connected to the power rail.

converts the task time (in seconds) to the equivalent number of ticks as
defined for the Processor within which the program is slated to run

deletes any descriptions associated with individually defined array
elements

These descriptions are not carried over to the converted program.

converts shift instructions to a Shift Left Instruction. See “About How Shift
Instructions Are Converted into the Ladder Editor” in this Appendix.

To save the converted file, choose the Save command. If you quit the Editor or
close the converted program before saving the program, the original,
unconverted program is unchanged.

F-1

F-2

The Editor creates a log file if any conversion error or warning messages are
generated. See “Correcting Ladder Program Conversion Warnings and Errors”
in this Appendix.

Once the Editor converts the program, it renames the original program file to
file.@PC and renames the original remark file.REM to file. @RE. You can delete
these files later if you wish.

F.1 About How Shift Instructions Are
Converted into the Ladder Editor

Any shift register instructions present in the old ladder program are converted to
a Shift Right (SR) instruction. The logic that drives the SHIFT and DATA
parameters is converted to correspond with the SR instruction’s EN and BIT
parameters, respectively. The following table describes how other conditions are
handled.

If the: Then:
old instruction had a shift register | The shift register length for the
length that is less than 16 corresponding SR instruction is 16 (an

integer). Note that all the bits within the
integer are shifted. A message is posted
in the file UPDATE.LOG or
program_name.LOG.

RESET input parameter was A MOVE block is added to the rung. This
programmed in the old instruction | block is driven by the logic that was
connected to the RESET parameter.

The MOVE instruction resets the shift
register integer when the reset coil is true.

DATA and SHIFT parameters The rung is converted into a MOVE
were not programmed in the old instruction and a warning is posted in the
instruction file UPDATE.LOG or program_name.LOG.

F.2

Warnings and Errors

Correcting Ladder Program Conversion

This section lists some of the warning messages generated when you convert
an old ladder program to a V4.0 or later program and describes what you can
do to fix them. The messages are posted in the file UPDATE.LOG or

program_name.LOG.

Message:

What the message
means:

Resolution:

In old Rung number xx
(new Rung number xx),
the old global preset
variable is no longer used.

The variable assigned
to the PN parameter in
the old timer or
counter instruction was
a global integer
variable.

To use a global
variable as a timer or
counter preset, define
the timer or counter
data structure as a
global, double integer
array by using the
Variable Configurator.
For more information
about preset values,
see “About Timer
Variables” and “About
Counter Variables.”

In old Rung number xx
(new Rung number xx),
the old global current
value variable is used.

The variable assigned
to the CN parameter in
the old timer or
counter instruction was
a global integer
variable.

To use a global
variable to store a
timer’s or counter’s
current value, define
the timer or counter
data structure as a
global, double integer
array by using the
Variable Configurator.
For more information
about current values,
see “About Timer
Variables” and “About
Counter Variables.”

In old Rung number xx
(new Rung number xx), a
preset variable is used that
was also used on another
rung.

In older ladder
programs, you could
use the same preset
variable on multiple
timers or counters in
the same program.
Now, each timer or
counter instruction in a
program must have a
unique data structure
assigned to it.

To use the same preset
variable on multiple
timers or counters, add
MOVE instructions to
copy the preset value
from one of the
timer/counter data
structures to another
timer/counter data
structure.

F-3

Appendix G

Glossary

Accept: To approve the edit made to an online program. Rungs
that have been added, deleted, or modified must be
accepted and verified before they can be downloaded to
a Processor.

Bit-indexed variable: A variable referencing a bit within an integer
or double integer variable. For example, pump.15
references bit 15 within the integer variable "pump.”

Commit: To allow the Editor to verify and download changes made
to an online program. You must accept online changes
before you can commit them. You can commit online
changes immediately after you accept them or while the
program is in Test Mode.

Data Structure: Data structures contain a collection of Boolean and
double integer data and are used for the timer and
counter data types.

Element-indexed variable: A variable referencing an element within
an array variable. For example, panel[11] references an
element 11 within the array variable "panel.” An element
can be a Boolean, integer, or double integer.

Global Variables: Global variables can be referenced by ladder,
Control Block, or BASIC programs in a rack. Global
variables can refer to memory locations, physical 1/0
locations, or network locations. Global memory variables
can be of any data type supported by the Editor. If you
type in the first letter of a variable using upper case, the
default scope will be global. The names of global
variables appear in upper case.

Local Variables: Local variables are those that can only be used in
the program in which they are defined. No other
programs can reference them. If you type in the first letter
of a variable name using lower case, the default scope
will be local. The names of local variables appear in lower
case.

Match: As applied to the Resolve Variable Descriptions
command, a global variable in a ladder program that
uses the same name as one in Variable Configurator.

For example, the Editor would determine that a global
variable called PUMP_STATUS used in a ladder program
is a match to a global variable called PUMP_STATUS
present in the Variable Configurator.

The data type of a variable is not a factor when
determining whether the global variables match.

G-1

G-2

Path:

Pause:

Program:

The directory structure used by the AutoMax Executive is:
drive:\library\system\rack
where:

drive is the personal computer hard drive where
the Executive is stored

library |is the base directory under which all the
AutoMax systems are stored

system |is the subdirectory where the system data-
base files are stored

rack is the subdirectory where all the rack data-
base files and all programs for the rack are
stored

The default drive and library name are specified as part of
the Setup procedure for the AutoMax Programming
Executive software. If you want to create a new library or
change the default (selected) library or drive, you must
use the Setup procedure.

Places the Editor in the Paused state so that you can use
the Online Task Manager. The programs continue to run
in the Processor, but their display in a program window is
not updated.

Task. In the Editor, the terms “program” and “task” are
Synonymous.

Rung status area: The gray-shaded area left of the power rail.

When rung numbers, revision marks, or set triggers are
displayed, they are located here.

Test Mode: Lets you actively execute rungs, but the changes made

Trigger:

to the online program are not permanently installed in the
processor.

A trigger is a way to capture or freeze a rung’s status
while monitoring the program. Once a trigger is set, the
rung’s status stays frozen on the programming terminal,
but the rung continues to run on the CPU.

Index
A P

AutoMax window, 1-1 Page breaks, 3-7
Page setup, defining, 3-5
C Power flow, 5-5
freezing or capturing, 5-13
Coil Off trigger, 5-14 Print options, setting, 3-4
Coil On trigger, 5-14 Printing

defining page setup, 3-5
how Editor prints rungs, 3-6
Constants, assigning to instruction multiple copies, 3-8
parameters, 2-10 page breaks, 3-7
components of printout, 3-2
range of rungs, 3-7
D right-justifying coils, 3-8
setting print options, 3-4

Commit command, 5-7

Data display, 5-6 Programs
closing, 1-3
converting older, F-1
E data display in online, 5-6

displaying in multiple windows, 1-4
displaying in split window, 1-5
events, 1-8—1-9 editing, 2-1
exiting the Editor, 1-8
editing multiple, 1-5
G from the Editor, 1-6
from the Task Manager, 1-5
editing online, 5-1

Global variables, 2-14 sccapiing changes, 56

Glossary, G-1 cancelling changes, 5-10
comparing with unedited program,
5-12
I verifying changes, 5-11

changes you can make, 5-1
downloading changes, 5-7

memory limits, D-1

open using Monitor PC Program, 5-4

Instruction palettes
anchoring, A-5

moving, A-4 pausing the Editor, 5-5
removing program, 5-10
saving in test mode, 5-9
L testing programs, 5-9
execution, 1-7
Local variables, 2-14 opening, 1-2
power flow in online, 5-5
printing — see Printing, 3-1
properties, 1-7
M running and stopping ladder, 1-8
saving, 1-3
Monitor PC Program command, 5-4 saving automatically, 1-4

setting scan time, 1-7
states of onling, 5-2

Index-1

verifying, 4-1 T
creating a verify error log file, 4-2
resolving errors, 4-3
variable configurator database, 4-2
warning messages, 4-3

Test mode, 5-9
removing online program from, 5-10
saving online program in, 5-9

Tick rate, 1-8

Toolbar, A-3, F-2
R anchoring, A-5
ladder language, A-2

. L . moving, A-4
Run—time errors, viewing and clearing, standard, A-1
5-22 '

Rung Error trigger, 5-15

Revision marks, displaying and hiding, 1-6

Triggers
clearing, 5-16
Rung table, 3-3 re-activating, 5-15
setting, 5-13

Rungs waiting for while editing, 5-15

defining grid limits for, 2-2
entering descriptions of, 2-4
in the program window, 2-4

in the Rung Properties dialog box, V
2-4
inserting instructions into, 2-5 Variable name table, 3-3
instructions Variabl
assigning variables or constants to, AR . .
210 assigning to instruction parameters,

2-10
changing data type of, 2-13
changing scope of, 2-14
entering descriptions of, 2-11
forcing, 5-17, 5-19
unforcing, 5-20
list of set or forced, 5-21
pre—defined, C-1
error handling, C-2
ladder execution time, C-2
program scan, C-1
selecting, 2-13
set/force/unforce dialog box, 5-17, 5-21
setting, 5-17, 5-18
testing for forced, 5-22
total number of forced, 5-21
S unforcing an entire page, 5-21
using Smart—Matching to enter, 2-12

Verify Error Log File, 4-2
Verify Errors, resolving, 4-3

changing type of, 2-9
using Find and Replace, 2-9
using Instruction Properties, 2-9
connecting
by drawing wires, 2-6
using ENO output bit, 2-6
Properties dialog box, 2-8
selecting, 2-7
order of execution, E-1
printing of, 3-6
selecting, 2-2
starting, 2-1
turning the grid on and off, 2-2

Scan time, 1-8
Shortcuts, B-1

State of logic, capturing in an online
program, 5-13
based on coil becoming false, 5-14
based on coil becoming true, 5-14
based on rung error, 5-15

Status Bar, A-5

Index-2

RE 1857LC Printed in U.S.A.

RELIANCE CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will affect. Include markeups from
the document or attach additional pages if necessary.)

What will this improvement suggestion provide?

Qriginator: City: State: ZIP:
Company: Phone: ()

Address: Date:

Technical Writing Internal Use: Follow-Up Action:

Writer: Date:

Thank you for your comments . . .

HELIANCE’.
ELECTRICH |

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www.reliance.com/automax

www.rockwellautomation.com
Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, Wi, 53202-5302 USA, Tel: {1} 414.212.5200, Fax: (1) 414.212.5201
for All y Products, Products and Global Manufacturing Solutions
Americas: Rockwell Automation, 12[]1 South Seoond Street. Mllwaukee W1 53204-2496 USA, Tel: (1) 414.382.2000, Fax: {1} 414.382.4444
Europe/Middle East/Africa: Rockwell SA/NV, Y du Souverain 36, 1170 Brussels, Belgium, Tel: {32) 2 663 0600, Fax: (32) 2 663 0640

Asa Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: {852} 2867 4788, Fax: (852) 2508 1

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: {1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, BrilhistraRe 22, D-74834 Elztal-Dallau, Germany, Tel: {49} 6261 9410, Fex: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-01/02 Revenue House, Singapore 307987, Tel: {65) 6356-9077, Fax: (65) 6356-9011

Publication J2-3093-3 - April 1998 Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in U.S.A.

