
AutoMax®

Enhanced BASIC
Language

Instruction Manual J-3675-6

BNATE
ELECTRIC&L/

The information in this user’s manual is subject to change without notice.

ONLY QUALIFIED PERSONNEL FAMILIAR WITH THE CONSTRUCTION AND
OPERATION OF THIS EQUIPMENT AND THE HAZARDS INVOLVED SHOULD
INSTALL, ADJUST, OPERATE, OR SERVICE THIS EQUIPMENT. READ AND
UNDERSTAND THIS MANUAL AND OTHER APPLICABLE MANUALSIN THEIR
ENTIRETY BEFORE PROCEEDING. FAILURE TO OBSERVETHIS PRECAUTION
COULD RESULT IN SEVERE BODILY INJURY OR LOSSOFLIFE.

WARNING

PROGRAMS INSERTED INTO THE PRODUCT SHOULD BE REVIEWED BY
QUALIFIED PERSONNEL WHOARE FAMILIAR WITH THE CONSTRUCTION AND
OPERATION OF THE SYSTEM AND THE POTENTIAL HAZARDS INVOLVED.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY
OR DAMAGETO EQUIPMENT.

WARNING

THE USER MUST PROVIDE AN EXTERNAL, HARDWIRED EMERGENCY STOP
CIRCUIT OUTSIDE THE CONTROLLER CIRCUITRY. THIS CIRCUIT MUST
DISABLE THE SYSTEM IN CASE OF IMPROPER OPERATION. UNCONTROLLED
MACHINE OPERATION MAY RESULT IF THIS PROCEDUREIS NOT FOLLOWED.
FAILURE TO OBSERVETHIS PRECAUTION COULD RESULT IN BODILY INJURY.

WARNING

ONLY QUALIFIED PERSONNEL WHO HAVE READ AND UNDERSTOOD ALL
APPLICABLE AUTOMAX INSTRUCTION MANUALS AND ARE THOROUGHLY
FAMILIAR WITH THE PARTICULAR APPLICATION MAY UTILIZE THE ON-LINE
PROGRAMMING OPTION PROVIDED IN THE AUTOMAX PROGRAMMING
SOFTWARE. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN
BODILY INJURY OR DAMAGETO EQUIPMENT.
Norton® is a registered trademark of Peter Norton Computing, Inc.

MODBUS®is a registered trademark of Gould, Inc.

Data Highway™ is a trademark of Rockwell International.

VT100™ is a trademark of Digital Equipment Corporation (DEC).

IBM-XT™ and AT™ are trademarks of International Business Machines.

Toshibais a trademark of Toshiba America.

Microsoft®, Windows®, and MS-DOS®are trademarksof Microsoft.

Reliance™ , AutoMax™, and AutoMate™ are registered trademarks of Rockwell

International.

Shark™,ReSource™, and R-Net™ are trademarks of Reliance Electric Company

or its subsidiaries.

1.0

2.0

3.0

4.0

5.0

6.0

Table of Contents

Introduction 2.0... ccc ccc ceceeee eee eee 1-1

1.1. Compatibility with Earlier Versions 00.0000 ee eee 1-1

1.2 Additional Information 2.0.0.0... 0.cee1-2

1.3 Related Hardware and Software 0... eee 1-2

Programming For AutoMax Systems00.0s cence eee 2-1

2.1 Configuration00.teens 2-1

Version 3.0 and Later SystemS 0.0.0 e eee 2-1

Version 2.1 and Earlier Systems 0... c cee eee 2-1

2.2 AutoMax Application Tasks0 0... cece eee 2-2

2.3 Universal Drive Controller Application Tasks 2-3

Structure Of An AutoMax Enhanced BASIC Program 3-1

3.1 Line Format...6.eeeeee 3-1

3.2 Multi-Statement Lines 0...eee 3-2

3.3 Multi-Line Statements ©0000...eee3-3

Variables and Constants 0... ccc cece eee ee 4-1

4.1 Variables0.eens4-1

4.1.1 Simple Variables00..0ceee 4-1

4.1.1.1 Single Integer Variables0.00. 4-2

4.1.1.2 Double Integer Variables (Long Integers) 4-3

4.1.1.3 Real Variables . 6.0.0...eee 4-3

4.1.1.4 Boolean Variables 0...eee 4-4

4.1.1.5 String Variables 0.0... cece eee ee 4-4

4.1.2 Subscripted Variables (Arrays)0 0020s 4-4

4.1.3 Variable Control Types 0.0...ee 4-6

4.1.4 Pre-defined Common MemoryVariables 4-8

4.2 Constants6.eee4-8

4.2.1 Integer Constants0.. 0. eeeeee 4-8

4.2.2 Hexadecimal Constants 0...ee 4-9

4.2.3 Real Constants 0.0.0.0... 0. cecees 4-10

4.2.4 String Constants 00...eee 4-10

4.2.5 Boolean Constants 00.cee4-11

EXpreSSIONS 0. ceceeee eee eee eens 5-1

5.1 Arithmetic Expressions 0.00.ccc5-1

5.2 String Expressions0.00.5-3

5.3 Boolean Expressions0.. 0.00 c cece eee ees 5-4

5.4 Relational Expressions 0.00... cece eee ees 5-6

5.5 Mixed Mode (Integers and Reals) Arithmetic. 5-7

AutoMax Enhanced Basic Statement Types.................05 6-1

6.1 Defining Variable Control 00.0...ee 6-1

6.1.1 LOCAL Statementee 6-1

6.1.2 COMMONStatement 0.cee6-3

6.2 Program Documentation 0000. ccee6-4

6.3 Variable Assignment (LET/SET_MAGNITUDE) 6-6

6.4 Transferring Program Control 0c eee eee 6-7

7.0

6.4.1 GOTO (GO TO) Statement 0... eee 6-7

6.4.2 ON GOTO Statement 0. ccceee 6-9

6.4.3 GOSUB, ON GOSUB,and RETURN Statements

(Subroutines) 0.0...eee 6-10

6.4.4 IF-THEN-ELSE Statement 0000s eee eee eee 6-12

6.5 Program LOOping 66.eeeeee 6-13

6.6 Statements Used for Multi-Tasking Applications 6-17

6.6.1 EVENT NAMEStatement.......... 0.000: c cece eee 6-17

6.6.2 SET and WAIT ON Statements 0.000 6-19

6.6.3 OPEN CHANNELStatement 0.00.00 c cee eee 6-20

6.7 Real Time Enhancements 0000s cece eee eens 6-22

6.7.1 DELAY Statement 0... ccceen eee 6-22

6.7.2 START EVERYStatement 0.0.0 cece eee eee 6-23

6.8 Communication Capabilities 0.0.02. eee 6-24

6.8.1 OPEN Statement 0.00. cece cee eee eens 6-24

6.8.2 CLOSE Statement 0...eee 6-33

6.8.3 INPUT Statement 0... ccc cece eee eens 6-33

6.8.4 PRINT/PRINT USING Statements008 6-35

6.8.5 IOWRITE Statement (Accessing Foreign I/O)........... 6-41

6.8.6 GET Statement 0... ccc cette eens 6-42

6.8.7 PUT Statement 0...ccs6-42

6.8.8 READ Statement 0.00. cece eee eee 6-43

6.8.9 DATA Statement 0... ccc cece tenets 6-43

6.8.10 RESTOREStatement 0.000 c cece eee eee eee 6-44

6.9 ErrorHandling cecetts6-45

6.9.1 ON ERRORStatement 0.0... cece eee 6-45

6.9.2 RESUMEStatement 0.000 c cece eee 6-46

6.9.3 CLR_ERRLOGee6-46

6.10 INCLUDE Statement 0.0... ccc ccc eee nen 6-46

6.11 Stopping Execution (STOP and END Statements) 6-47

FUNCHIONS 00.eeeeee eee eee eens 7-1

7.1 SIN Function 0.0.0.0... cent e een e etn 7-2

7.2 COS Function 0... cee cece eee ent teen etnies 7-2

7.3 TAN Function .. 0.0... cece eect nee teen eens 7-2

7.4 ATN (ATAN) Function... 0.0.0... 7-2

7.5 LN Function 00... ect ee eee nett ene 7-3

7.6 EXP (e**x) Function...6.tees 7-3

7.7 SQRT Function ... 00... 0c cece eee tenet nnee 7-3

7.8 ABS FUNCTION 1.0...0ctteen nets 7-3

7.9 CHRFunction 0.0... ccc ccc cette teen e ene 7-3

710 ASC% FUNcCtion ..0.eeetetnies 7-4

7.11 LEN% FUNCTION 00...cccett ete nnee 7-4

7.12 STRS Function 0.0.0.0... cette eee nen 7-4

7.13 BINARY$ Function 0.0.0 ccc cect eet ete enes 7-5

7.14 HEX$ Function .. 0...eee teen eee nenes 7-5

7.15 LEFT$ Function 0.0.00... ccc ccc ccc tect e eee nenes 7-5

7.16 RIGHTS Function . 0.0... 0. cc ccc cc cece tenet nen 7-6

7.17 MIDS Function 0.0.0.0 0.00 cccete e eee nenes 7-6

7.18 VAL% FUNCTION ©...eetteen eet e eens 7-6

TAQVAL FUNCHION 06...tnett etnies 7-7

8.0

7.20 FIX FUNCHON 0.6...ceeent eee e eet nnes 7-7

7.21 CURPOSS Function 0.00. c ccc tenet ene nes 7-7

7.22 CLRSCR$ Function 0... c cee ete e eens 7-8

7.23 CLRLINE$ Function 0.0... c ccc cee eect eens 7-8

7.24 IOREAD% Function 2.0... . ccc cette nett 7-9

7.25 BIT_SET@ Function...0...7-10

7.26 BIT_CLR@ Function .. 0...eeeeee 7-10

7.27 BIT_MODIFY@ Function 0...eee eee 7-10

7.28 SHIFTL% Function ... 0... cette tenet nee 7-11

7.29 SHIFTR% Function 2.0.0... 0cceeteen 7-12

7.30 ROTATEL% Function 0.0... c ce ccc cee eee ene 7-12

7.31 ROTATER% Function 0... ccette 7-13

7.32 BCD_OUT% Function . 0.0... cccccs 7-13

7.33 BOD_IN% FUNCHION oo.iiieee7-13

7.34 BLOCK_MOVE@ Function 0.00 ceee 7-14

7.35 GATEWAY_CMD_OK@ Function0..0 0008 7-15

7.36 VARPTRI Function 0.0.00 c ec cece eee ene ene 7-16

7.37 TEST_ERRLOG@ Function 000 c cece ee 7-17

7.38 READVAR% Function 00... ccc cette teens 7-17

7.39 WRITEVAR% Function 0. ccc cece nett eee nee 7-18

7.40 FINDVAR! Function 0.0.0 cece ccc eee eens 7-19

7.41 CONVERT% Function 1.0.0... ccc ccc eee ete 7-19

7.42 RTS_CONTROL@ Function 0.0 e eee ee 7-20

7.43 ALL_SENT@ Function «0...ceeeee 7-21

7.44 WRITE_TUNE Function 0.0.0. ccceee 7-21

Ethernet Communication Functions............. 000. ee eee eeee 8-1

8.1 ENILINIT% Function . 0...ceceeee eee 8-1

8.2 SOCKET% Function 0... cccete n tenes 8-2

8.3 BIND% Function 0.0... 0... cccteen teens 8-2

8.4 CONNECT% Function 0.0. cette teens 8-3

8.5 ACCEPT% Function 0... c cece eet nett eens 8-4

8.6 SEND% Function 0.0... 0. ccc cette ene 8-5

8.7 SENDL% Function 0... ccc cette teens 8-6

8.8 RECV% Function . 00... ccccee teen een 8-7

8.9 RECVL% Function 0...ceeteens 8-8

8.10 SETSOCKOPT% Function ... 0... ccceee 8-9

8.11 GETSOCKOPT% Function00.8-10

8.12 SHUTDOWN% Function 0.0.0... cece tee teens 8-11

Appendices

Appendix A

Converting a DCS 5000 BASIC Task to AutoMax0.. A-1

Appendix B

BASIC Compiler and Run Time Error Codes-.005 B-1

Appendix C

HardwareInterrupt Line Allocation 0000: cee eee C-1

Appendix D

BASIC Language Statements and Functions Supported

in UDC Control Block TaskS 0.0 ceceeee D-1

Appendix E

AutoMax Processor Compatibility with Versions

of the AutoMax Programming Executive 0... eee eee E-1

Appendix F

New Features...eeeeens F-1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

List of Tables

Arithmetic Operators «60... 6.tee5-2

Relative Precedence of Arithmetic Operators 5-2

Truth Table for Boolean Operators 0.000 e eee eee 5-5

Relational or Comparison Operators00 000. 5-6

1.0

1.1

INTRODUCTION
The products described in this instruction manual are manufactured

by Reliance Electric Industrial Company.

The AutoMax Programming Executive software includes the

software used to create and compile Enhanced BASIC programs.

This instruction manual describes AutoMax Enhanced BASIC

languagefor Version 2.0 and later AutoMax Programming Executive

software.

Features that are either new ordifferent from those in the previous

version of the AutoMax Programming Executive software are so

noted in the text. Appendix lists the differences betweenversions

of the software.

This instruction manual is organized as follows:

1.0 Introduction

2.0 General information about programming for AutoMax

systems
3.0 General information about programming in BASIC

4.0 Variables and Constants

5.0 Expressions
6.0 Statements
7.0 Functions

8.0 Ethernet Communication Functions

Appendix A Converting tasks created with previous versions

of the Executive software to the current version

Appendix B_ BASIC compiler and run time error codes

Appendix © Hardware Interrupt Line Allocation

Appendix D BASIC Language Statements and Functions

Supported in UDC Control Block Tasks

Appendix E AutoMax Processor Compatibility with Versions

of the AutoMax Programming Executive

Appendix F New Featuresin this Release

Compatibility with Earlier Versions

Version 2.0 of the AutoMax Programming Executive requires

AutoMax Processor M/N 57C430A or 57C431; Version 3.0 and later

require AutoMax Processor M/N 57C430A, 570431, or 570435.
M/N 57C430 cannot co-exist in the same rack with M/N 57C430A,

570431, or 57C435. Refer to Appendix E for listing of the AutoMax

Processorsthat are compatible with Version 2 and later of the

AutoMax Programming Executive software.

The thick black bar shownat the right-hand margin of this page

will be used throughout this instruction manualto signify new or

revised text or figures.

1-1

1.2

1.3

Additional Information

You should be familiar with the instruction manuals which describe

your system configuration. This may include, but is notlimited to,

the following:

e@ J-3618 NORTON EDITOR REFERENCE MANUAL

e@ J-3649 AutoMax CONFIGURATION TASK INSTRUCTION
MANUAL

e@ J-3650 AutoMax PROCESSOR INSTRUCTION MANUAL

e J-3676 AutoMax CONTROL BLOCK LANGUAGE
INSTRUCTION MANUAL

e@ J-3677 AutoMax LADDER LOGIC INSTRUCTION MANUAL

e@ J2-3018 AutoMax Remote I/O SharkInterface Instruction

Manual

e J2-3093 AutoMax Ladder Language Editor

e J2-3094 AutoMax Enhanced Ladder Language

e@ Your ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL

e Your personal computer, DOS, and Windowsinstruction manuals

e@ [EEE 518 GUIDE FOR THE INSTALLATION OF ELECTRICAL
EQUIPMENT TO MINIMIZE ELECTRICAL NOISE INPUTS TO
CONTROLLERS

Related Hardware and Software

The AutoMax Programming Executive software is used with the

following hardware and software, which is sold separately.

1. M/N 57C430A, M/N 57C431, or M/N 570435 AutoMax

Processor.

2. IBM-compatible 80386-based personal computer running DOS

Version 3.1 or later. Version 4.0 and later Executive software

requires an 80486-based personal computer(or higher) running

Windows 95.

3. M/N 610127 RS-232C ReSourceInterface Cable. This cable is
used to connect the personal computerto the Processor

module.

4. M/N 57C404A(and later) Network Communications module.

This module is used to connect racks together as a network and

supports communication with all racks on the networkthat

contain 57C404A modules through a single Processor module.

M/N 57C404 can be used to connect racks on a network;

however, you cannot communicate over the network to the

racks that contain M/N 570404 Network modules. You must

instead connect directly to the Processorsin those racks.

5. M/N 57C440 Ethernet NetworkInterface module. This module is

used to connect AutoMate Processors to TCP/IP Ethernet local

area networks.

6. M/N 57C413 or 570423 Common Memory module. This module
is used whenthere is more than one Processor module in the

rack,

M/N 57C492Battery Back-Up.This unit is used whenthere is a
M/N 576413 Common Memory module in the rack.

M/N 570384 Battery Back-Up Cable. This cable is used with the
Battery Back-Up unit.

M/N 570554 AutoMax RemoteI/O Shark Interface Module. This

module is used to connect a Shark remote rack to the AutoMax

Remote I/O network.

. B/M 57552 or B/M 57652 Universal Drive Control module. This

module is used for drive control applications.

. M/N 57C560 AutoMax PC3000 Processor/Scanner module. This
moduleis a full-size ISA module that mounts in the personal

computer.

. M/N 57C565 AutoMax PC3000Serial Interface module. This

moduleis a full-size ISA module that mounts in the personal

computer.

. M/N 57C570 Industrial AutoMax PC300. This unit consists of a

panel-mount, industrial grade enclosure containing an AutoMax

PCG3000 Processor/Scanner module, an AutoMax PC3000 Serial

Interface Module, and a power supply.

1-3

2.0 PROGRAMMING FOR

2.1

AutoMax SYSTEMS
In AutoMax systems, application programs,also referred to as tasks,

can be written in Ladder Logic/PC language, Control Block

language, and Enhanced BASIC language. Enhanced BASIC

language is modeled after standard BASIC.It consists of simple

statements, functions, and math notation to perform operations.

Refer to J- 3676, J-3677, and J2-3094 for more information about
Control Block and Ladder Logic/PC programming.

In addition to multi-processing, AutoMax systemsincorporate

multi-tasking. This means that each AutoMax Processor(up to four)

in arack allows real-time concurrent operation of multiple

application tasks.

Multi-tasking features allow the programmer’s overall control

schemeto be separated into individual tasks, each written in the

programming language best suited to the task. This simplifies

writing, check-out, and maintenance of programs; reducesoverall

execution time; and provides faster execution forcritical tasks.

Programming in AutoMax systemsconsists of configuration, or

defining the hardware, system-wide variables, and application tasks

in that system, as well as application programming.

Configuration

Version 3.0 and Later Systems

If you are using AutoMax Version 3.0 or later, you configure the

system within the AutoMax Programming Executive. See the

AutoMax Programming Executive for information about configuration

if you are using V3.0 orlater.

The information that follows is applicable only if you are using

AutoMax Version 2.1 or earlier. If you are using AutoMax Version 3.0

or later, you can skip over the remainderof this section and continue

with 2.2.

Version 2.1 and Earlier Systems

AutoMax Version 2.1 and earlier requires a configuration task in

orderto define the following:

1. All tasks that will reside on the Processors in a rack.

2. All variables that equate to physical I/O in the system.

3. All other variables that must be accessible to all Processors in

the rack.

Oneconfiguration task is required for each rack that contains at

least one Processor. The configuration task must be loaded onto the

Processor(s) in the rack before any application task can be

executed becauseit contains information about the physical

organization of the entire system.

2-1

2-2

2.2

The configuration task does not actually execute or run; it serves as

a central storage location for system-wide information. Note that

local variables, those variables that do not need to be accessible to

more than one task, do not need to be defined in the configuration

task. Refer to J-3649 for more information about configuration tasks.

AutoMax Application Tasks

AutoMax Processorsallow real-time concurrent operation of multiple

programs,or application tasks, on the same Processor module. The

tasks are executed on a priority basis and shareall defined system

data. Application tasks on different Processor modulesin the rack

are run asynchronously.

Eachtask operates onits own variables. The samevariable names

may be usedin different tasks, but each variable is only recognized

within the confines of its task unlessit is specifically designated a

COMMONvariable. Changing local variable ABC% (designated

LOCAL) in one task has noeffect on variable ABC% in any other

task.

Multi-tasking in a control application can be comparedto driving a

car. The programmercan think of the different functions required as

separate tasks, each with its ownpriority.

In driving a car, the operator must monitor the speedometer,

constantly adjust the pressure of his foot on the gas pedal, check

the rearview mirrorfor othertraffic, stay within the boundaries of his

lane, etc., all while maintaining a true course to his destination. All of

these functions have an importanceorpriority attached to them,

with keeping the car on the road being the highest priority. Some

tasks, like monitoring the gasoline gauge, require attention at

infrequentintervals. Other tasks require constant monitoring and

immediate action, such as avoiding obstacles on the road.

In a control application the Processor needsto be able to perform

calculations necessary for executing a control scan loop, monitor an

operator’s console, log error messages to the console screen, etc.

Of these tasks, executing the main control loop is obviously the

most important, while logging error messagesis the least important.

Multi-tasking allows the control application to be broken downinto

suchtasks, with their execution being dependent upon specified

“events,” such as an interrupt, operator input, or the expiration of a

time interval.

The following table is a representation of typical tasks found in a

control application and the kind of event that might trigger each.

Task Triggering Event

Execute main control loop Expiration of a hardware

timer that indicates the

interval at which to

begin a new scan

Respondto external I/O input Generation of a hardware

interrupt by an input module

Read operator data Input to an operator panel

Log information Expiration of a software timer

2.3

Eachof these tasks would be assigned a priority level (either in the

specific configuration task for the rack,orin later versions of the

Programming Executive software, through the configuration option).

The priority determines which task should run at any particular

instant. The more important the task, the higher the task priority.

Universal Drive Controller Application
Tasks

Universal Drive Controller (UDC) modules can be used in an

AutoMax Version 3.3 (or later) system for drive control applications.

Only UDC Control Block tasks can be run on a UDC module; BASIC

tasks cannotberun.

UDC Control Block tasks can use someof the statements and

functions in the AutoMax Enhanced BASIC language. See

Appendix D for list of the BASIC language statements and

functions that are allowed in UDC Control Block tasks.

2-3

3.0

3.1

STRUCTURE OF AN
AutoMax ENHANCED BASIC
PROGRAM
BASIC programs,or tasks, are created using a text editor.

Note the following naming convention. Application task namesin

AutoMax are limited to 8 characters. Theinitial character must

always bea letter. Following theinitial character can beletters (A-Z),

underscores (_), and numbers (0-9). Spaces and other characters

are not permitted. Thefile extension is used to identify the task.

Extension .CNF identifies configuration tasks. Extension .BAS is

used for BASIC tasks. AutoMax Control Block tasks use extension

.BLK. UDC Control Block tasks also use extension .BLK. PC/Ladder
Logic tasks have a .PC extension.

An AutoMax Enhanced BASIC program consists of a set of

statements using certain language elements and syntax (rules for

the form of each statement). Each line begins with a numberthat

identifies the line as a statement and indicates the orderof

statement execution. Each statementstarts with a word specifying

the type of operation to be performed, such as PRINT, GOTO, and

READ. For a BASIC program to compile correctly, all text except

print list items delimited by quotation marks must be in upper case.

The following symbols have special meaning for the duration of this

manual:

<CR> = Carriage return, sometimes marked “RETURN”or

“ENTER” on keyboards. You should assumethat

all BASIC statements end with a <CR> unless

otherwise noted. Some statements used in

examples may explicitly use the <CR> notation at

the end of a statement to make the example easier

to understand.

= Underscore character used to make variable

names more readable (for example,

MOTOR_SPEED, LINE_REFERENCE).

Note that the underscore is not a dash or minus character, which

appears on the samekey as the underscore on most standard

keyboards.

Line Format

The format of a statement in a BASIC program is as follows:

line statement statement line

number keyword body terminator

10 LET SPEED%=(GAIN%+3) <CR>

The line numberis a label that distinguishes oneline from another

within a program. Consequently, each line number must be unique.

The line number must be a positive integer within the range of 1 to

32767inclusive.

Line numbersare required for the following reasons:

1. To determine the order in which to execute the program.

3-1

3-2

3.2

2. To provide a reference for conditional and unconditional

transfers of control (GOTO,GOSUB,etc).

Line numbers can be consecutive numbers:

1 LET M%=23

2 LET Z%=11

3 LET K%=Z%+M%

4 END

However, writing line numbers in increments of 10 allows for

inserting additional statements between existinglines:

10 LET M%=23

20 LET Z%=11

30 LET K%=Z%+M%

40 END

Multi-Statement Lines

In BASIC, one line can be either one statement or several

statements, always terminated by pressing the RETURN <CR> key.

A single statementline consists of:

1. Aline numberfrom 1 to 32767 10

2. Astatement keyword PRINT

3. The body of the statement A%+B%

4. Aline terminator <CR>

Example of a single statementline:

10 LET SPEED%=(GAIN%+3)/12 <CR>

A multi-statementline (more than one statement on a single line)

requires a backslash (\) or a colon (:) to separate each complete

statement. The backslash or colon statement separator must be

typed after every statement exceptthe last one. For example, the

following line contains three complete PRINT statements:

10 PRINT A$\PRINT B$\PRINT C$ <CR>

or

10 PRINT A$:PRINT B$:PRINT C$ <CR>

There is only one line numberfor a multi-statement line. You should

take this into consideration if you plan to transfer control to a

particular statement within a program. Forinstance, in the above

example, you cannot execute just the statement PRINT B$ without

executing PRINT A$ and PRINT C$ as well.

3.3 Multi-Line Statements

In BASIC, a statement can continue onto anotherline. When a

statementis to be continued, the line is terminated with an

ampersand (&) followed by a <CR>. After the ampersand, only
spaces ortabs are allowed. Other characters will cause compiler

errors. The following is an example of a multi-line statement.

20 LET MOTOR_REF%=MOTOR_REF%+ & <CR>
SYSTEM_GAIN% - OLDGAIN%/2+FACTOR% <CR>

The ampersandtells the compiler that the statement is continuing

on the next line. <CR> without the ampersand beforeit signifies

that the entire statement is complete. When a statement is continued

on asecondline, that line should begin with a tab to provide

maximum readability. The statement below is confusing because the

30 lookslike a line numberinstead of part of an equation.

20 LET MOTOR_REF%=MOTOR_REF%+OLDGAIN%+ & <CR>

30+ GAINFACTOR%+VALUE% <CR>

3-3

4.0

4.1

4.1.1

VARIABLES AND
CONSTANTS
All operations performed in BASIC use constants or variables.

Constants are quantities with fixed value represented in numeric

format. Variables are namesthat represent stored values or physical

\/O. These values may change during program execution. BASIC
always usesthe current value of a common(i.e., system-wide)

variable in performing calculations.

Note that Control Block and PC/Ladder Logic tasks capture(latch)

the values of all common simple double integer, integer, and

boolean variables at the beginning of the task scan. Strings, reals,

and array variables of any type are not latched. This meansthat

Control Block and PC/Ladder Logic tasks do not see the most

current state of commonsimple double integer, integer, and boolean

variables; instead, they see the state of these variables at the

beginning of the scan. Any changes madeto these variable values

by Control Block or PC/Ladder Logic tasks are written to the variable

locations at the end of the scan of the particular task. See section

4.1.3 for more information about commonvariables.

Variables

The following sections describe the use of variables in AutoMax

Enhanced BASIC.

Simple Variables

Variable namesin AutoMax tasks must meetthe following

conditions:

1. They must ALWAYSstart with a letter or an underscore.

2. Following the letter/underscore can beletters, digits, or an

underscore.

They must not include spaces.

The maximum length for any variable in BASIC or Control Block

tasks is 16 characters (letters, underscore, or digits), not

including the type character attached at the end (%,!,@,$). Note

that PC/Ladder Logic tasks variables are limited to 14 characters

(16 in V4.0 andlater). This is importantif variables that are used

in BASIC or Control Block tasks must also be used in Ladder

Logic tasks, i.e., if the variables are common.

This variable length (16) permits meaningful and understandable

names. Avoid cryptic variable names.

Meaningful Unintelligible

Variable Names Variable Names

MOTOR_SPEED% MSPD%

GAIN% G%

CURRENT_GAIN% CGN%

DROP_1_REFERENCE% D1RF%

4-4

4-2

4.1.1.1

AutoMax Enhanced BASIC hasvariable “types” just as standard

BASIC does. The variable type indicates the kind of information the

variable is representing (numeric data, characters, etc.). The

variable type is specified by a terminator or ending character.

BASICusesfive types of variables:

1. Single integer variables (values —32768 to +32767)

2. Double integer variables (values — 2147483648 to

+2147483647)

3. Real variables (values 9.2233717E+18 to —9.2233717E+ 18).

Note that the “E+(n)”is read as an exponent in BASIC.

4. Boolean variables [values TRUE (ON) or FALSE (OFF)]

5. String variables.

Single Integer Variables

A single integer variable is a named location in which an integer

value can bestored. It is called a “single” integer becauseit requires

a single 16-bit word to represent its current value in the range

+32767 to —32768 (a 16-bit signed number). It is named using the

ruleslisted in section 4.1.1 are terminated with a percent sign (%).

If you include an integer variable in a program, its value can be an

integer (no fractional part) or a real (decimal) number. If you assign

a decimal numberto an integer variable, the fractional part will be

truncated or ignored. For example,if the statement attempts A% =

3.6574, the value 3 will be assigned to A%.

If an attempt is madeto assign a value larger than the range

+32767 to —32768to a single integer variable, BASIC will log this

condition into the error log and will load the largest possible single

integer value into the variable. For example,if the statement

attempts A% = 43987, BASIC will log this as an error and set a A%

= 32767;if the statement attempts A% = — 53667, Basic will log an

error and A% will be set to = —32768.

The following are valid single integer variables:

MOTOR_SPEED%
FREQUENCY%
ROLL_WIDTH%
VOLTAGE_REF%

The following are invalid single integer variables and the reasons

that they are invalid:

GAIN (Variable not terminated with %)

GAIN%2 (Variable not terminated with%)

55SPEED% (Variable siarts with a digit rather than a letter or an

underscore.)

All internal integer calculations are in double precision,or 32 bits.

4.1.1.2

4.1.1.3

DoubleInteger Variables (Long Integers)

A double integervariable is a named location in which an integer

value can bestored. It is called a “double” integer becauseit

requires two 16-bit words, or 32 bits, to representits value in the

range +2147483647 to —2147483648 (a 32-bit signed number). It is

named using theruleslisted in section 4.1.1 and terminated with an

exclamation point(!). If you include an integer variable in a program,

its value can be aninteger(no fractional part) or a real (decimal)

number. If you assign a decimal numberto a double integer

variable, the fractional part will be truncated or ignored. For

example, if the statement attempts A! = 3.6574, the value 3 will be

assigned to Al.

If an attempt is madeto assign a value larger than the range

— 214783648 to +214783647 to a double integer variable, BASIC will

log this condition into the error log and will load the largest possible

double integer value into the variable. For example,if the statement

attempts A! = +2157483647, BASIC will log this as an error and set

aA! = +2147483647; if the statement attempts A! = —214783649,

Basic will log an error and A! will be set to = —214783648.

The following are valid double integer variables:

RESOLVER_ADDRESS!
LARGE_COUNTER!
FOREIGN_CARD_ADR!

All internal integer calculations are in double precision, or 32 bits.

Real Variables

A real variable is a named location in which a decimal value can be

stored. It is named using the ruleslisted in section 4.1.1. Unlike the

othervariable data types, a real variable has no terminating

character, such as % or!.

A real variable can have the following values:

9.2233717 x 1018 > positive value > 5.4210107 x 10-20

—9,2233717 x 1018 > negative value > —2.7105054 x 10-20

Note: Whenentering real variable values in your program, use

scientific notation. See section 4.2.3 for more information on real

constant formats.

The following are examplesof valid real variables:

ROLL_RATIO
GAIN_ADJUST
WINDUP_FRACTION

Only eight digits of significance are used whenentering a real

number, thus 9.4481365 and 9.4481 365200178 would betreated the

same way. The 200178 at the end of the second number would be

ignored. Real or decimal numbers require more time to process

while BASIC is running due to the increased accuracy and additional

internal calculations required.

It is legal to assign an integer to a real variable (REAL=45).

However,if the integer is greater than 224 (16777216), the real

value into whichit is converted will be imprecise because of the

format in which the real numbers are manipulated (24-bit mantissa).

4-3

4-4

4.1.1.4

4.1.1.5

4.1.2

Boolean Variables

A boolean variable is a named location which represents a

TRUE/FALSE or ON/OFFvalue.It is named using the ruleslisted in
section 4.1.1 and terminated with an “at” symbol (@).

The following are valid boolean variable names:

REEL_EMPTY@
OVER_TEMP@
TURRET_ENGAGED@

The following are invalid boolean variable names and the reasons

that they are invalid:

SYSTEM_READY(Variable not terminated with @)

WEB_FULL@@ (Two @sback-to-backareillegal)

4TH_READY@ (Variable starts with a digit rather than

a letter or an underscore)

As with integer and real variables, boolean variables form

expressions. With boolean variables you use the boolean operators

NOT, AND, OR, and XORand boolean constants TRUE, FALSE, ON,

and OFFin forming these expressions:

LINE_DOWN@ = NOT(POWER@ AND RUN@)
RUN _REQUEST@ = TRUE
SECTION_ POWER@ = FALSE
CRT __REFRESH@ = OFF
IF RUN@ OR (STOPPED@ AND FAULT@) THEN 1350

Refer to section 5.3 for more information about boolean

expressions.

String Variables

String variables are used to store any alphanumeric sequence of

printable characters, including spaces, tabs, and special characters.

The terminating characteris $.

The sequencein a string variable cannotinclude a line terminator
(<CR>). When defined, the sequence must be enclosedeitherin

single or double quotes. If one type of quotes is used in the

sequenceitself, the other type must be used to enclose the

sequence.

Version 1.0 Executive software allowed a fixed maximum length of

31 characters for string variables. Version 2.0 and later allowsstring

variables of variable length, from 1 to 255 characters. To specify the

maximum size of a string variable, add a colon and a number

(1-255) immediately after the $ character. For example, defining

A$:50 as a local variable in an application task will reserve space for

50 characters. Notethat if no length is specified, the default length

is 31.

Subscripted Variables (Arrays)

Array variables are used to store a collection of data all of the same

data type. Arrays are permitted for all data types. Arrays are limited

to four dimensions, or subscripts. The numberof elements in each

dimensionis limited to 65535. This size is further limited by available

memory. The term array is used to denote the entire collection of

data. Each item in the array is known as an element.

Array variables are specified by adding a subscript(s) after the

variable name, which includes the appropriate terminating character

to denote the type of data stored in the array. The terminating

characteris followed bya left parenthesis (or bracket), the

subscript(s), and a right parenthesis (or bracket). Multiple subscripts

are separated by commas.Note that subscripts can be integer

constants as well as arithmetic expressions that result in integer

values.

array variable name

A% (5)

subscript

terminating character

(denotes variable

type)

Anarray with one dimension, i.e., one subscript, is said to be

one-dimensional. An array with two subscripts is said to be

two-dimensional, etc. The first element in each dimension of the

array is always element 0. Therefore, the total numberof elements in

each dimension of the array is always one morethanthe largest

subscript. For example, array A%(10) is a one-dimensional array

containing eleven integer values.

Example 1 - One-dimensional array

A% Oo; 1] 2] 3) 4] 5

185) 2) 53] 79] 99] 122)

value of A

Example 2 — Two-dimensional array

B% (6,3)

O71] 2) 3) 4] 5] 6

185} 2 53| 79] 99) 124 40

70 36] 46] 31 34] 85] 6

77| 73) 21 476| 51] 47
B%

3 18] 23] 53/342) 39 107

In the case of string arrays, Version 1.0 Executive software always

allocated the maximum amount of memory for each elementin the

array, regardless of whetherthe string stored in that element was of

the maximum length, 31 characters. Version 2.0 (and later)

Executive software allows the programmerto specify the maximum

size of elementsin the array, from 1 to 255 characters.

To specify the maximumsize of string variables in an array, add a

colon and a number(1-255) immediately after the $ character when

declaring the variable in an application task or defining it during

configuration. For example, defining A$:10(20) as a local variable in

4-5

4.1.3

4-6

an application task allocates spacefor 21 string values of 10

characters each. Note that if no length is specified in theinitial array

reference, the default maximum is 31.

To define an array that will be common, i.e., accessible to all tasks in

the rack, you needtofirst define the variable. If you are using

AutoMax Version 2.1 or earlier, this is done with a MEMDEFor

NVMEMDEFstatementin the configuration task for the rack. If you

are using AutoMax Version 3.0 or later, common variables are

defined within the Programming Executive. For example,

ARRAY1@(10)will allocate space for 11 boolean variables. Then,in

an application task for the rack, you declare the array a COMMON

variable as follows:

COMMONARRAY1 @(10). Each element of the array that will be

usedin the task can be defined with LET statements as follows:

LET ARRAY1 @(0) = TRUE (boolean values can only be

TRUE/FALSE or ON/OFF). Other application tasks in the rack can
accessthe valuein variable ARRAY1@(0) simply by declaring ita

COMMONvariable.

Variable Control Types

The control type of a variable refers to the waythe variable is

declared or defined in the configuration and application tasks. There

are two control variable types in AutoMax systems, local and

common.

1. Local

Local variables are variables that are not defined in the rack

configuration and are therefore accessible only to the

application task in which they are defined. BASIC and Control

Block tasks must define the variables with a BASIC LOCAL

statement. For Ladder Logic/PC tasks, the editor prompts for

whetherthe variable is local or common whenthetask is being

created.

In BASIC and Control Block tasks, local variables can be

defined as tunable. Tunables are variables whose value can be

tuned, i.e., changed within limits, by the operator through the

On-Line menu of the Executive software. The value of tunable

variables can also be changed by application tasks by using the

BASIC languange WRITE_TUNE function. BASIC and Control

Block tasks must define tunable variables with a variation of the

BASIC LOCALstatementthat includes the tuning parameters.

Ladder Logic/PC tasks cannot usetunable variables.

The value of local variables at the time ofinitial tasks installation

is always 0. The effect of a Stop All or a powerfailure on variable

values in the rack dependsonthe variable type. Local tunable

variable values in both AutoMax and UDC application tasksis

alwaysretained. Local variable values are retained for AutoMax

tasks, but not for UDC tasks.

AutoMax Processorswill retain the last valuesof all local

variables. UDC moduleswill retain the variable values for the

following: parameter configuration data, UDC test switch

information, and D/A setup configuration. The variable values of

the following input data will also be retained: feedbackregisters,

UDC-PMI communication status registers, and UDC task error

log information. UDC modules will NOT retain local variable

values and data foundin the following registers, which are

considered outputs: command registers, application registers,

the ISCR (interrupt status and control register), scans per

interrupt register, and scansperinterrupt counter register. See

the AutoMax Programming Executive for more information on

the STOP ALLand system re-initialization conditions.

Common

Commonvariables are variables that are defined in the rack

configuration and are therefore accessible to all application

tasks in the rack. There are two types of commonvariables,

thosethat refer to memory locations, and those that refer to

actual physical I/O locations. The two typesare defined

differently in the configuration for the rack.

Common memory variables can be of any data type. They may

be read to or written from. CommonI/O variables are long
integer, integer, or boolean variables that represent actual

physical I/O locations. Common |/O variables that represent

inputs may be read but not written to. I/O variables that
represent outputs may be readorwritten to.

All BASIC and Control Block tasks that need to access common

variables can do so by using the BASIC statement COMMON(or

GLOBAL). For Ladder Logic/PC tasks, the editor prompts for
whetherthe variable is local or common whenthetask is being

created. At least one task in the rack should alsoinitialize

common memoryvariables,i.e., assign values to them, if they

need to be at a knownstate other than 0.

The value of commonvariablesat the time ofinitial task

installation depends upon whetherthe variable references

memoryor physical I/O locations. Common memoryvariables

are always0 at task installation. Common |/O variables that

represent outputs are always 0. Common |/O variables that

represent inputs are alwaysat their actual state.

After a STOP ALLcondition or a powerfailure followed by a

system-restart, common memoryvariables that are defined as

volatile memory statements in the configuration are 0. Common

memory variables that are defined as non-volatile memory in the

configuration retain their last value. Commonvariables that

represent I/O locations are at 0 for outputs and at their actual

state for inputs. Note that the UDC dual port memoryis treated

like I/O variables. See the AutoMax Programming Executive for

more information on the STOP ALL and system-restart

conditions.

4-7

4.1.4

4.2

4.2.1

4-8

Pre-defined Common MemoryVariables

The following common memoryvariables are pre-defined for every

rack. However, they do not appear on the form for common memory

variables. You must enter these variable nameson the form if you

want to use these variables in application tasks.

AUTORUNSTATUS@ - True when AUTO RUNis enabled for the

rack; false if AUTO RUNis not enabled

FORCINGSTATUS@ - True whena variable is forced in the rack;

false when no variables are forced in the

rack

BATTERYSTATUSO@ - True when the on-board battery of the

Processor module or Common Memory

modulein slot 0 is OK

BATTERYSTATUSI@- """" "un
BATTERYSTATUS2@- """" " "uu nn
BATTERYSTATUS3@- """" " "uu nn
BATTERYSTATUS4@- " " " "Un B

w
W
O
N
D
+

Constants

A constant, also knownasa literal, is a fixed value that is not

associated with a variable name. Listed below are thefive types of

constants that can be used in AutoMax, along with their size

limitations.

1. Single and double integer constants (whole numbers)

2. Hexadecimal constants (whole numbersin base 16 or “hex”

format)

Real (decimal) constants

String constants (alphanumeric and/or special characters)

5. Boolean constants

Integer Constants

An integer constant is a whole numberwith no fractional part. For

example, the following numbersareall integer constants:

29 —8
3432 1
12345 205

The following are not integer constants:

1.6 .08
754.2 5.2041E+06
341/5 95.3

Recall that BASIC integer constants mustfall in the range —32768 to

+32767 when used assingle 16-bit integer variables (ending in %),

or in the range —2147483648 to + 2147483647 when used as

double (32-bit) integer variables (ending with !). If you specify a

numberoutside the appropriate range, BASIC prints a compiler

error messagetelling you to replace the numberwith one within the

properlimits.

4.2.2 Hexadecimal Constants

A hexadecimal constant also specifies an integer value in base 16 or

“hex” (hexadecimal) format. A hexadecimal numberhasthree parts:

ONNNNNNNNH

where:

1. A leading zero (0) is required if the first digit of the hexadecimal

numberis an alphabetical character (A through F) so that BASIC

can distinguish it as a numberand not a variable name. A

leading zero may also be usedin front of a numeric character in

the hexadecimal numberjust as in a normal integer constant

(0987H = 987H)

2. The eight Ns represent the 8 hexadecimal (hex) digits in the

range 0 through F.

3. Thetrailing character “H” indicates that the numberis

hexadecimal and is always required.

The following are correct hexadecimal numbers:

098FCE2H OFFEEC1H
OBEEFC2H 400B3C2H
99987H

The following are invalid hexadecimal numbers and the reasonsthat

they are invalid:

FECO002H (Doesnotstart with zero in front of the alpha hex

characterF)

9800BE Doesnot end with H.)
3FFFFE342H (Larger than maximum double integer.)

BASIC hexadecimal numbers mustfall in the range from zero to

OFFFFFFFFH. Hexadecimal constants are stored by BASIC exactly

as they are specified, with leading zerosfilling in any of the eight hex

digits not specified for a double word or 32-bit format. This means

the numbers must be specified as 2’s complement signed numbers.

For example, BASIC will load the hex constant 0F371H as

Q000F371H. It will not sign-extend the number to OFFFFF371H. If the

number OFFFFF37His desired, the entire 8 hex digits must be

specified. If you specify a number outside the appropriate range

(OFFFFFFFFH), the compilerwill print an error on the screen.

4-9

4.2.3

4.2.4

4-10

Real Constants

A real constant is a numberwith a decimal point. For large numbers,

use scientific notation in the following general format: a sign, digits,

a decimal point, digits, an “E,” a sign, and digits. Take, for example,

the following real constant example:

—1234.5678E +11

The “E” is areal constant which means“times ten to the” followed

by the “power” or exponent. In the real constant 34.99876E +07, the

“E” meanstimes ten to the 7th. There must always be a numberin

front of the “E” when the “E” is used (E+13 byitself is illegal.). Only

8 digits of significance are used to store the number. Thetotal

numberof digits on the left and right side of the decimal point must

be less than or equal to 8.

As with the real variable, the real constant can have a valuein the

range:

9.2233717 x 10'8> positive value > 5.4210107 x 10-20
—9.2233717 x 1018 < negative value <—2.7105054 x 10—20

All of the valueslisted below represent the number one hundred

twenty:

120 00001 20.00 +.120E+03
120. 1200000.00E-0004 0.000120E6
+120. 120E3 1200000E-4

String Constants

String constants are sequences of alphanumeric and otherprintable

characters. Line terminators (<CR>) are not allowed. String

constants must be enclosedeither in single or double quotes. If one

type of quotes is used in the sequenceitself, the other type must be

used to enclose the sequence. String constants may be up to 132

characters long.

A BASIC string prints every character between quotation marks

exactly as you typeit into the source program.This includes the

following:

1. Letters (A—Z)

2. Leading, trailing, and embedded spaces

3. Tabs

4. Special characters(\, ?, !, etc.)

Note, however, that the actual BASIC string does not contain the

delimiting quotation marks.

The following are valid string constants:

“THIS IS A STRING CONSTANT.”

“SO IS THIS.”

“THIS IS A MESSAGE!*/??”

“HEREIS A ‘QUOTE’ FROM SOMEONE?””(Note the embedded
single quote.)

‘HE SAID “GOODBYE” TODAY’ (Note the embedded double
quotes.)

4.2.5

The following are invalid string constants and the reasonsthat they

are invalid:

“WRONG TERMINATOR’(Surrounding quotes must be of same

iype.)

‘SAME HERE”(Surrounding quotes mustbe of same type.)

“NO TERMINATOR(Noclosing double quote.)

The following are examplesof valid string constants assigned to

string variables and string constants used as intermediate values in

expressions:

MESSAGE$ = “GEAR BOX FAULT”

MESSAGE$ = “SECTION 12 AIR PRESSURE SAFETY VALVE
FAULT”

PART_MESSAGE$ = LEFT$(“SECTION 12 AIR PRESSURE
SAFETY VALVE FAULT”, 12)

(Valid string constant not assigned to a variable directly but used

an an intermediate value to a function.)

PRINT “SECTION 12 AIR PRESSURE SAFETY VALVE FAULT”

(Valid string constant usedin a print statement.)

Boolean Constants

With integers and strings, a constantis usedininitializing or

assigning a value to a variable. Boolean variables must be assigned

the values of true or false. The two boolean constants are “TRUE” or

“ON” and “FALSE”or “OFF.”

The following are valid boolean constants:

SYSTEM_READY@ = TRUE
OVER_TEMP@ = OFF

5.0

5.1

EXPRESSIONS
An expression is a symbol or a group of symbols that BASIC can

evaluate. These symbols can be numbers, strings, constants,

variables, functions, array references, or any combination of these.

The following are the different types of operations which can be

performed:

1. Arithmetic expressions/operators

2. String expressions/operators

3. Boolean expressions/operators

4. Relational expressions/operators

Arithmetic Expressions

BASICallows you to perform addition, subtraction, multiplication,

division, and exponentiation with the following operators:

** Exponentiation

* Multiplication

/ Division

+ Addition, Unary+

= Subtraction, Unary—

The unary plus and minusare different from the other operators

because they operate on only one operand, not two. The standard

operators (binary operators) require two operands.

The following expressions use binary operators:

MOTOR_SPEED% + JOG_SPEED%
GAIN% - GAIN_CHANGE%
GAIN% * GAIN_FACTOR%

The following expressions use unary operators:

GAIN — SPEED(Legal but results in a positive value)

—MOTOR_SPEED%
—(GAIN%+ GAIN FACTOR%)
+MOTOR_SPEED%(This form is not typically used because

it is assumed that the absenceof an operatorin frontof a

variable means plus or positive)

Unary minus makesa positive expression negative. Unary plus does

not make a negative expression positive. A unary minus applied to a

variable already having a negative value will, of course, make the

variable (or expression) positive.

The symbols for unary plus and minus (+ and —)are the same as

the binary plus and minus, but the operationis different. For

example, A% — B% means subtract B% from A%, whereas —(A%)

means negative the value of A%.

Performing an operation on two arithmetic expressions of the same

data type yields a result of that same data type. For example, A% +

B% yields an integer, and K$ + M$yields a string.

Whena real value (constant or variable) is used in an expression

with any other numeric data type (single integer, double integer, or

real) the result is always real. When a boolean value is used in an

5-1

expression with a single or double integervariable, the result is

alwaysinteger.

Table 5.1 lists the arithmetic operators and their meanings. In

general, you cannot place two arithmetic operators consecutively in

the same expression. The exception is the unary minus and plus

and the exponentiation symbol **. For example, A* —B is valid, and

A/(—B)is valid, but A+*Bis not valid.

Table 5.1 - Arithmetic Operators

Add Bto A

A-B Subtract B from A

A*B Multiply A by B

A/B Divide A B

A**B Calculate A to the power B

BASIC evaluates expressions according to arithmetic operator

precedenceorpriority. Each arithmetic operator has a

predetermined position in the hierarchy or importance of operators.

This priority tells BASIC when to evaluate the operatorin relation to

the other operators in the same expression. Refer to table 5.2.

Table 5.2 - Relative Precedence of Arithmetic Operators

Symbol Operation Relative Precedence

0 Parentheses 1 (Highest, evaluatedfirst)

- Unary minus 2

+ Unary plus

** Exponentiation 3

* Multiply 4

Divide

+ Add 5 (Lowest, evaluated last)

- Subtract

5-2

Operators shown on the sameline have equal precedence. BASIC

evaluates operators of the same precedencelevelfrom left to right.

Note that BASIC evaluates A**B**C as (A**B) **C.

In the case of nested parentheses (one set of parentheses within

another), BASIC evaluates the innermost expressionfirst, then the

one immediately outside it, and so on. The evaluation proceeds

from the inside out until all parenthetical expressions have been

evaluated. For example, in the expression B = (25+ (16*(9**2))),

(9**2) is the innermost parenthetical expression and BASIC

evaluatesit first. Then it calculates (16*81), and finally (25+1296).

5.2

BASIC evaluates expressions enclosed in parentheses before the

operator immediately outside the parentheses, even when the

operator enclosed in parenthesesis on a lower precedencelevel

than the operator outside the parentheses. In the statement A = B*

(C — D), BASIC evaluates the (C — D)first, and then multiplies B by

the result of (C — D).

BASIC will still evaluate other expressions before thosein

parenthesesif the other expressions comefirst in the statement and

have a higher precedence.In the statement below, however, the

parenthetical expression occurslater in the overall expression. The

exponentiation operation is performedfirst (before the parentheses)

becauseit is encounteredfirst in the left-to-right evaluation and, at

the timeit is encountered, is a higher precedence than any operator

beforeit.

BASIC evaluates the expression A = B — C**5 + (X*(Z — 17)), in

the following sequence:

Cs Exponentiation
B- C5 Subtraction with first term
Z-17 Innermost parenthetical expression

X* (Z— 17) Next level of parentheses

[B — C5] + [X*(Z — 17)] Combination of the two expressions

Arithmetic mixing of both single and double precision integers along

with real variables and constants is permitted in a BASIC statement.

The rules regarding truncation and the maximum size integer-to-real

conversionstill apply.

The following are valid arithmetic mixing examples:

20 GAIN = MOTOR_SPEED%*(OLDGAIN!*13.8876)

or

20 GAIN! = GAIN! + REFERENCE%

The following example could cause an overflow if the resultant value

is larger than 16 bits of precision. In such a case,the largest

possible single positive or negative integer would be loaded into the

variable GAIN%. The program would continue to run, and an error

would be loggedto notify the user of the problem.

20 GAIN% = REFERENCE! + GAIN%

String Expressions

BASIC provides three operations for use with string expressions.

These are the assignment operation (=), the concatenation

(addition of strings) operation (+), and the equality/inequality

comparison operations (=, < >, or > <).

By using the assignment operator, you can equate or assign one

string variable or constant to anotherstring variable. In the

statement below, the character sequence “THIS IS A MESSAGE”is

assignedto the string variable C$:

C$ = “THIS IS A MESSAGE”

The concatenation operator (+) combinesstring variables and

constants to form a new string expression:

C$ = “HI” + BS + D$ + “STRING”

5-3

5-4

5.3

Therelational operators*=”and “< >” or “> <” are used when

there is a relational or comparison expression, such as that found in

an “IF”’statement. The statement below tests the value of the

boolean whichis the result of the string comparison. If the result is

true and the twostrings are not equal (< >), the program transfers

control to line 250. The relational operator “=” is used in the same

wayto teststrings:

20 IF C$ < > “MESSAGE” THEN GOTO 250

Whenstrings are concatenated (added) and the result is stored ina

string variable (A$ = B$ + “TEXT”), the resultant length of the
computed string expressionstill must not exceed the maximum

length for a string (255 charactersif specified in the variable

definition, 31 as a default if no size is specified). If it is longer than

the maximum,it is truncated to the maximum and loaded.

If the string expression is used in a relational expression or PRINT

statement whereit is not assigned to a variable but only exists as a

temporary entity, the string expression may be as large as 132

characters.

The following are strings used as intermediate values. In both cases,

the string expression enclosed within the parentheses may be as

large as 132 characters. If it exceeds that length, it is truncated to

132 characters. This meansthat BASIC will allow string expressions

to be as large as 132 characters while the expression is being

computed; however, at the timeit is to be assigned to a string

variable, it must be able tofit the string into the allocated variable

space (31 default, 1-255 if specified in the variable definition):

IF (A$ + C$) < > (BS + “TEXT”) THEN 200
PRINT (“HI’+ A$ + BS + C$),N%,XYZ

Boolean Expressions

A boolean expression, just like a boolean variable, evaluates to a

true/false value. Refer to table 5.3 for the truth table. Boolean

expressions usethe following boolean operators:

AND (performslogical “AND” function)

OR (performs logical “OR” function)

XOR (performs logical “exclusive-OR” function)

NOT (unary boolean operator performs a boolean

complement)

The following are boolean expressions:

OVER_TEMP@ (Simple boolean variable, TRUE or FALSE)

OVER_TEMP@ AND SHUTDOWN_READY@ (ANDstwo
boolean results together)

NOT ((A@OR B@ AND C@) (complex boolean expression)

Table 5.3 - Truth Table for Boolean Operators

1

0

1 1

1= TRUE; 0 = FALSE

The AND boolean operator has a higher precedence than the OR or

XORoperators, which have equal precedence. Thus,in a boolean

expression, the AND operatorwill be evaluated before the OR

operator. The NOToperatoris always applied immediately to the

expression (which is the same as the unary minus operator). The

following examples show a boolean expression and the order of

evaluation of the operators:

A@ = B@ OR C@ AND D@

1. C@AND D@

2. B@ OR [C@ AND D@]

A@=B@ AND NOT C@ OR D@ AND A@

1. NOTC@

2. B@AND [NOT C@]

3. D@ AND A@
4. [B@ AND (NOT C@)] OR [D@ AND A@]

A@ = NOT(A@ OR B@AND C@) OR C@ AND NOT D@ OR

B@

1. B@ANDC@

A@ OR[B@ AND C@]

NOT [A@ OR (B@ AND C@)]

NOT D@

C@ AND[NOT D@]

[NOT (A@ OR (B@ AND C @))] OR [C@ AND (NOT D@)]

[NOT (A@ OR (B@ AND C@))) OR (C@ AND (NOT D@))] ORN
O
R

W
O
N

Boolean values can be combined with integer values by using either

boolean orarithmetic operators. In combining the two data types,

note the following guidelines:

e Whena boolean value is combined with an integer value using

boolean operators or arithmetic operators, the result is always in

integer.

5-5

 5-6

e Whena boolean value is combined with an integer value, the

booleanis always treated as the value zero (0) if it is FALSE and

one (1) if it is TRUE.

The following statementillustrates these rules:

A% = SYSTEM_DOWN@*(SPEED_REFERENCE — 2.3376)

The value of this statementwill be 0 if SYSTEM_DOWN@ is FALSE

or (SPEED_REFERENCE — 2.3376) if SYSTEM_DOWN@is TRUE.

Whena boolean operator is used to combine the twodifferent data

types, it performs a bit-wiseorbit-for-bit operation on the two values,

treating the boolean as either an integer one (1) or zero (0):

LOWER_BYTE% = ANALOG_IN% AND OFFH

This operation will “mask” off the upper8 bits of the value

ANALOG_IN%, which can be useful when manipulating integers as

binary data.

Relational Expressions

It is often necessary in BASIC to comparedifferent values and,

based onthe result of that comparison, perform one of several

actions. These comparisons are done with relational operators and

are usually used in conjunction with the IF-THEN statementto create

conditional transfers or conditional executions of different parts of a

program. Table 5.4 lists the valid relational or comparison operators

and their meanings.

In forming relational expressions, similar data types must be

compared, i.e., numeric types must be comparedto other numeric

types. It would beillegal to compare a boolean orinteger

expression to a string expression using a relational operator.

Table 5.4 - Relational or Comparison Operators

A is equal to B

Ais less than B

A is greater than B

Ais less than or equal to B

A is greater than or equal to B

A is not equal to B

A is not equal to B

5.5

The following are relational expressions:

A% > B%
((A%+3)/16) < > 32
(((A%/25) +13)+B%) >= SPEED%
(A% < > B%) OR (GAIN => 3.58867) OR (FAULTS% = 0)
(MESSAGE$ = “SYSTEM DOWN’)
(SPEED > OLD_SPEED + 23.8876/GAIN)

Since the result of a relational expressionis a true or false value

(boolean result), several relational sub-expressions may be

combined by using the boolean operators AND, OR, and XOR.

The following are statements using relational expressions:

10 IF (A% > B%) THEN 200

10 IF (SPEED < 32.887) AND (SECTION 5on@) THEN
GOSUB 12000

10 IF SYSTEM_STOPPED@ OR FAULTS@ OR (ROLL_
WIDTH% <23) THEN 240

Mixed Mode(Integers and Reals)
Arithmetic

In performing mixed modearithmetic (expressions in which integers

and reals are intermixed), BASIC must always convert the integer

value to a real or decimal numberinternally to be able to operate on

the two quantities.

The integer must be converted to a real to maintain the maximum

amount of precision possible. (Converting the real to integer and

doing all integer arithmetic obviously is not feasible becauseall the

fractional parts would be lost; A=2.37764+4 should result in

6.37764 not 6.) This integer-to-real conversion happensonly,

however, at the point where the integer value or sub-expression

value is combined with a real value in an operation.

WhenBASIC evaluates an expression. it follows certain rules which

determine the orderof evaluation in the expression. When using

modearithmetic, use caution to assure the desired results.

If there are integer parts to the expression, BASIC will use integer

arithmetic until it encounters a real value and then convert the

integer partial result to real. For example, the following expression is

evaluated exactly as seen, left to right (because there are not

parenthesesand all the operators are of the same precedence or

importance):

REAL3 = B% * C% * D% * REAL1 * REAL2

The above statementis evaluated as follows:

1. B%* C%will be calculated in integer arithmetic.

2. The intermediate value of (B% * C%) is then multiplied by D%

using integer arithmetic because both quantities arestill

integers.

3. The intermediate value of [(B% * C%) * D%] is now multiplied by

REAL1, but since one of the valuesis real and oneis integer, the

intermediate value of [(B% * C%) * D%] must be converted to a

real value before the multiplication by REAL1.

5-7

5-8

4. The intermediate value of ([B% * C%) *D%] * REAL1), whichis

in real format, is now multiplied by REAL2, also in real format.

The result is then a real value which is loadedinto variable

REALS.

Note:If the variable on theleft side of the equal sign were an

integer, the resultant real value would be truncatedfirst and then

loaded into the variable.

The mixing of integers and reals in the previous example does not

result in a problem because,although there are intermediate integer

values, multiplication operators do not intermediate integer values,

multiplication operators do not cause any loss of precision as the

operations are performed (4 * 5.334 is the same as 4.00 * 5.334).

Problems may, however, occur when mixed modearithmetic

involves division. Consider the following example in which the

operation (A%/B%) must occurfirst because of the parentheses:

10 A%=17:B%=3:REAL= 13.7889
20 REAL2=(A%/B%) * REAL

The partial result of the first expressions is 5 (17 + 3 = 5.66666; the

fractional part 0.66666 is ignored becauseit is integer division). The

5 is then multiplied by 13.7889, yielding 68.9445 (5 x 13.7889), not
78.1370 (5.66666 x 13.7889).

Oncean intermediate result in a BASIC expression is evaluated as a

real, the rest of the expression will also be doneasreal arithmetic.

The above expression could be modified as follows to get the full

precision from the division:

10 A% = 17:B%=3:REAL = 13.7889
20 REAL2=(1.0*A%/B%) *REAL

Multiplying the 1.0 (which is a real number) by the variable A%

forces A% to be converted to real. The result of (1.0 * A%) is then a

real value. Since (1.0 * A%) is real, B% must be converted to real to

be usedin the division.

The following is a comparison of the execution timesfor different

arithmetic modes doing the same expression. Notice that the third

example, combining integer and real values, is the most time

consuming because of the conversion required on the integer

before the addition can be performed. It is, therefore, faster to do

arithmetic in either all real or all integer. If possible:

REAL = REAL + REAL1 250Usec

INT% = INT% + INT1% 210uUsec

REAL = REAL + INT% 362Usec

6.0

6.1

6.1.1

AutoMax ENHANCED BASIC
STATEMENT TYPES
As described in section 3.1, each BASIC statement begins with a

line numberfollowed by a keyword. The keyword determines what

information will follow on the line. This section describesall the

keywords used in AutoMax Enhanced BASIC grouped by statement

type as follows:

6.1 Defining Variable Control

6.2 Program Documentation

6.3 Variable Assignment

6.4 Transferring Program Control

6.5 Program Looping

6.6 Statements Used for Multi-Tasking Applications

6.7 Real-Time Control

6.8 Communication

6.9 Error Handling

6.10 Including Other Files

6.11 Stopping Execution

The formatof all statements is defined, along with the parameters

required and the permitted variable types. Parameters that are

optional are so noted.

Defining Variable Control

AutoMax Enhanced BASIC requires thatall variables be defined in

the task, i.e., initialized, prior to their use in the task if they must be

at a knownstate other than 0. See section 4.1.3, Variable Control

Types, for more information about variable control and theinitial

state of variables. Arrays must always be defined prior to their use.

Variables are defined using either a LOCAL or COMMONstatement.

The storage area required for the variables is automatically set aside

by these two statements.

LOCALStatement

The LOCALstatement is used to define three kinds of variables, all

of which are “local”, or accessible to, only the task in which they are

defined. This meansthat evenif the same variable name is used in

anothertask the values of the two variablesare totally independent

of each other. Any operation performed within a task on the variable

has no effect on the variable in the other task. The following types of

variables are defined using the LOCAL statement:

1. Simple variables used only by the task. These variables can be

of any data type and can be written to or read from.

2. Subscripted (array) variables used only by the task. These

variables can be of any data type and can be written to or read

from.

6-1

6-2

3. Tunable variables. These variables can be double integer,

integer, or real type and can be read from, but cannot be written

to by any means except through the Programming Executive

software running on the personal computer. Note that tunable

variables used to define gain parameters affected by auto-tuning

on the Universal Drive Controller (UDC) module will also be

written to by the operating system on the UDC.Seeinstruction

manual S-3006 for more information on UDC tasks.

LOCAL Simple Variable Format

LOCALvariable

where:

variable = simple variable of any type, i.e., double integer,

integer, real, string, or boolean; more than one

variable can be defined with one statement by

separating the variables with commas

examples:

10 LOCAL START_BUTTON@
20 LOCAL LIMIT%, TEMPERATURE, MESSAGE$

LOCALSubscripted (Array) Variable Format

LOCALvariable(size_list)

where:

variable = simple variable of any type, i.e., double integer,

integer, real, string, or boolean

size_list = up to five integer constants or integer variables

separated by commas,each value defining the

limit of the dimension of the array; expressions

that result in integer values are also permitted;

see section 4.1.2 for more information about

memoryallocation for arrays; note that thefirst

item in every dimensionis indicated in location

0, not 1

examples:

10 LOCAL A%(25) [reserves spacefor 26 integer

elements]
20 LOCAL B@ (2,5) [reserves spacefor 18 boolean

elements]

LOCALTunable Variable Format

Tunable variables provide a method of adjusting values within a

certain range through the Programming Executive software while the

application task is running. Tunable variables can only be read by

the application task itself. They cannot be written to, except in the

case of tunable variables in UDC tasks, which are also written to by

the operating system on the UDC. Tunable variables can never

occur ontheleft side of a LET (assignment) statement.

6.1.2

LOCALvariable [CURRENT=val1, HIGH=val2, LOW=val3, &
STEP=val4]

where:

variable = simple variable of double integer, integer, or real

type

val1 = a constantof integer, double integer, or real

type representing the value of the variable when

the taskis first downloaded to the Processor;if

the variable is modified when the taskis

running, it assumes the new value as the

“CURRENT”value.If the task is reconstructed

(uploaded from the Processorto the personal

computer), instead of val1, the “CURRENT”

value at the time will be printed following the

keyword “CURRENT”.

val2 = a constantof integer, double integer, or real

type representing the highest value that the

operator can assign to the variable

val3 = a constantof integer, double integer, or real

type representing the lowest value that the

operator can assign to the variable

val4 = a constantof integer, double integer, or real

type representing the amount (step) by which

the operator can adjust the value by

decrementing or incrementing the variable

examples:

50 LOCAL TENSION_GAIN%[CURRENT=25,HIGH=50, &
LOW=10,STEP=5]

60 LOCAL RANGE%[CURRENT=2500,HIGH=3500, &
LOW=2000,STEP=50]

COMMONStatement

The COMMONor (GLOBAL) statementis used to define two kinds of

variables, both of which will be, common, i.e., accessible to all tasks

in the rack. The value of the variable is made accessible to all tasks

by definingit in the configuration task for the rack and then

declaring the same variable commonin tasks that need to reference

the variable. If you are using AutoMax Version 2.1 or earlier, see

J-3649 for more information. If you are using AutoMax Version 3.0 or

later, see the AutoMax Programming Executive for more information.

A changein the value of a commonvariable in one application task

will be seen byall application tasks that reference that variable

name as a commonvariable. The following variables are defined

using the COMMON(or GLOBAL) statement:

1. Memory variables (variables that are assigned to memory

locations) that must be accessible to all tasks in the rack. These

variables can be of any data type. They can be read to or written

from.

2. 1/O variables (variables that that refer to actual physical I/O

locations). These variables can be double integer, integer, or

boolean variables. CommonI/O variables that represent inputs

may be read but not written to. Common |/O variables that

represent outputs may beread orwritten to.

6-3

6.2

6-4

Recall that BASIC tasks always use the mostcurrent value of

commonvariables when performing calculations, while Control

Block and PC/Ladder Logic tasks latch the value ofall simple
double integer, integer, and boolean variables. See section 4.0 for

more information.

Note that in the following examples, GLOBALcan besubstituted for

COMMON.

COMMONSimple Variable Format

COMMONvariable

where:

variable = simple variable of double integer, integer, real,

string, or boolean type for common memory

locations; simple variable of double integer,

integer, or boolean type for common I/O

locations; more than one variable can be

defined with one statement by separating the

variables with commas

examples:

10 COMMON SPEED%
20 COMMONLIMIT%, START@, PROMPT$

COMMONSubscripted (Array) Variable Format

COMMONvariable(size_list)

where:

variable = simple variable of any type, i.e., double integer,

integer, real, string, or boolean

size_list = up to five integer constants or integer variables

separated by commas,each value defining the

limit of the dimension of the array; expressions

that result in integer values are also permitted;

see section 4.1.2 for more information about

memoryallocation for arrays; note that thefirst

item in every dimensionis indicated in location

0, not 1

examples:

10 COMMONA%(10) [reserves spacefor 11 integer
elements]

20 COMMONB$:15(2,10) [reserves spacefor 33 string

elements of 15 characters each maximum]

Program Documentation

BASIC allows you to insert notes and commentsin a task. BASIC

provides two statementsfor this purpose, the REM and ! statements.

REM comment

OR

! comment

where:

comment = any text

The ! format is interchangeable with the REM format for a comment;

however, the statements are treated differently by the compiler.

The ! format comments are downloaded with a task onto the

Processor module. Gonsequently, when that task is uploaded to the

operator’s terminalat a later time, the comments can be

reconstructed along with the other program statements.

Whenthe REM format comments are compiled, they are discarded

and consequently, they are not downloaded with the task. They are

not reconstructed and cannotbe referenced with a GOTO or

GOSUB typetransfer of control because they will not exist in the

executable task. The REM format comments serve only to document

the sourcefile.

Whenprogrammingcritical applications, note that the | format

comments use memory on the Processor module. ! statements

require a small amountof execution time even though they do not

actually execute.

The remark (REM) statement must be the only statement on a

program line. The remark (!) statement can be either the only

statement on a line or it can be one of several statements in a

multi-statementline as long as it is the last statement. REM and !

statements may be continued onto more than oneline justlike any

other statement:

10! THIS IS AN EXTREMELY LONG COMMENT & <CR>
SHOWING JUST HOWIT IS POSSIBLE TO & <CR>
CONTINUE A REMARK ACROSS SEVERALLINES

10! This is an example of a series of several consecutive

20! ! statements used to form a block of comments.

30! These comments may contain any character except

40! a carriage return, for example: !|@$%* &*()_ &
+DRL.2782>%$

10 REM This is an example of a series of several

20 REM consecutive REM statements used to form a

30 REM block of comments. These comments may

40 REM contain any character except a carriage

50 REM return, for example: !}@$%&*()
6OREM + ~4[}{°".:/.,2V%$@UMH’

The following is a valid remark statement because the remarkis at

the end:

10 A% = B% —23: PRINT A%:! A REMARK

The following is an invalid remark statement because the remarkis

not at the end of the statement:

10 REAL = 3.57: |! NEW REMARK: PRINT

The line numberof a ! remark statement can be used in a reference

from another statement, such as a GO TO statement. BASIC only

displays the remarks on the personal computer when you edit the

program. See the GOTO (GO TO) statementin section 6.4.

6-5

6.3

6-6

Variable Assignment
(LET/SET_MAGNITUDE)

There are two formats for assigning a value to a variable: the LET

statement and the SET_MAGNITUDEstatement. The“LET”in an
assignmentis optional. In actuality tasks are more readable without

“LET”in front of the assignment. Its useis left to the discretion of the

programmer.

The following is the LET statement format:

LET variable = expression

where:

variable = simple (A%) or subscripted [A%(5)]; variable of

any data type.

expression = _—_—can be as simple as a constant or as involved

as a complex arithmetic expression. (See
section 5.0).

The following are valid LET statements:

10 LET SPEED%=25
15 LET MESSAGE$=“SYSTEM FAILURE”
95 WINDER_EMPTY@=TRUE
25 GAIN_CHANGE!=GAIN%*13
10 A% = B% + C% — (D% / 234) + 15 —F%
22 TENSION = TENSION — ((19.7765* &

GAIN%)/78 — 12.3) + OLD_REFERENCE
The following are invalid LET statements:

10 LET = A% (no variable specified on the left side of the

equalsign)

10 LET A% = “THIS IS A MESSAGE?’(a String value cannot

be assignedto an integer variable)

1OLETA% = 6+22—(B%—34)+(missing term) (Invalid

expression)

The purpose of the SET_MAGNITUDEstatementis to allow the

programmerto enter 16-bit hexadecimal values without having to

worry about sign extending the numbersinto a 32-bit form. The

following is the SET_MAGNITUDEstatement format:

SET_MAGNITUDE(variable, value)
where:

variable = a numeric simple variable (integer, double

integer) (not an array)

value = a numeric constant or expression of same type

as variable

If the variable specified in the statementis a single integervariable,

the value loaded will be only the lower 16-bits of the value field with

no sign extension:

10 SET_MAGNITUDE(A%,OFFFFH)
(A% is replaced by OFFFFH)

10 SET_MAGNITUDE(A%,0C249H OR 1234H)
(A% is replaced by 0D23DH)

6.4

6.4.1

10 SET_MAGNITUDE(A%,OFEFE2222H)
(A% is replaced by 02222H)

Evenif the result of the value field is more than 16 bits of

significance (all integer arithmetic is doneinternally as 32 bits), only

the lower 16 bits are loaded into the variable (single integer

variable). If the variable is a double integervariable, all 32 bits of the

value field are loaded into the variable.

Without the SET MAGNITUDEstatement, the programmer would

need to sign extend 16-bit hex values into a 32-bit form.

For example, when the statement A% = OFFFFH executes, BASIC

attempts to put the value OOOOFFFFHinto the variable A%. This

causes an overflow because the hex numberis greater than 32767,

the largest single integer. When this happens, BASIC logs an error

and loadsthe variable A% with the greatest possible value (32767).

The variable A%, sinceit is a 16-bit value, will hold the quantity

OFFFFH, butit must be sign extended into a 32-bit form to be

handled internally and look like a numberin the range 32767 to

-32768. Since all hex constants are not sign extended but assumed

to have leading zerosin the leading hex digits, OFFFFHis too large.

Sign extending OFFFFH would result in OFFFFFFFFH, whichis

expressed in 2’s complement decimal format as the number —1.

Therefore, the statement A% = — 1 or A% = OFFFFFFFFH would

properly load the value OFFFFHinto the variable A%.

Transferring Program Control

At times it may be necessaryto transfer controlto different sections

of a task depending on certain conditions (the value of a variable,

the occurrence of an event, etc.). BASIC provides the following

statements to accomplish this:

1. GOTO (GO TO) statement

2. ON/GOTOstatement

3. GOSUB statement/RETURN statement

4. ON/GOSUB statement

GOTO (GO TO) Statement

The GOTOstatement causesthe statementthatit identifies by line

numberto be executed next, regardless of that statement’s position

within the program. BASIC executes the statementat the line

numberspecified by GOTO and continues the program from that

point.

The following is the GOTO statement format:

GOTOline_number

or

GO TO line_number

where:

line number=

next program line to be executed; can be an integer constant or

integer expression. The specified line number can be smaller

(go backward) orlarger (go forward) than the line numberof the

GOTOstatement.

6-7

6-8

In the following example:

30 GOTO 110

BASIC branchescontrol to line 110. BASIC interprets the statement

exactly as it is written: go to line 110. There are no rules or

conditions governing the transfer.

In the sample program below, control passesin the following

sequence:

e BASIC starts at line 10 and assigns the value 2 to the variable

A%.

e Line 20 sends BASICto line 40.

e BASIC assigns the value A% + B% to variable C%

e BASIC ends the program atline 50.

e@ Line 30 is never executed.

@ 10 LETA% = 2

20 GOTO 40

30 LET A% = B% + 13

40 LET C% = A% + B%

50 END

The GOTOstatement must beeither the only statement on theline

or the last statement in a multi-statementline. If you place a GOTO

in the middle of a multi-statementline, BASIC will not execute the

rest of the statements ontheline:

25 LET A% = B% + 178\ GO TO 50\ PRINT A%

In the above statement, BASIC does not execute the PRINT

statement on line 25 because the GOTOstatementshifts control to

line 50.

Ifa! remark statementis specified in the line number to which

control is transferred, BASIC will branch to that statement even

though it does no direct processing:

10 LET A% = 2

20 GO TO 40

30 A% = B% + 13

40 ! THIS IS ANY COMMENT

50 LET C% = A% + B%

60 END

At line 20, BASIC transfers control to line 40. No processingis

requiredforline 40, although sometimeis required to read theline.

BASIC then executes the next sequential statement,line 50.

6.4.2

GOTOstatements can use integer expressions instead of a constant

as the transfer line number; however, the expression must have an

integerasits final data type. For example, in your task, you are

reading data from DATA statements and, depending on the value of

variable OPTION%, you want to execute a specific routine. Assume

the values of OPTION% are 0 thru 10. In this example, the routines

or option handlers are located at line numbers 1000, 1100, 1200,

etc. (they are 100 apart for the starting line number). This GOTO

statement multiplies the value of OPTION % by 100 to get the

“hundreds”value of the routine (100, 200, 300, etc.). This
“hundreds” value is then added to the base value of all the option

handlers, which is 1000:

10 BASE_VALUE% = 1000
15 INPUT OPTION%
20 GOTO (BASE_VALUE% + (OPTION% * 100))

1000 !---routine for handling option #0

1010...

1020...

1100!---routine for handling option #1

1110...

1120...

1200!---routine for handling option #2

1210...

1220...

If the value resulting from the integer expression does not match any

line numberin the task, the execution of the taskwill fall through to

the next statement and an errorwill be loggedin the taskerrorlog.

The above operation can be performed moreefficiently using the

“ON GOTO”statement.

ON GOTOStatement

The ON GOTOstatementis also a meansof transferring control

within a program to anotherline, depending on the result of an

integer expression.

The ON GOTOstatement hasthe following format:

ON integer_expression GOTO line_number_1...., line_number_N

or

ON integer_expression GO TO line_number_1....,

line_number_N

where:

integer_expression =

any arithmetic expression that

results in an integer value

6-9

6.4.3

6-10

line_number_1 through line_number_N =
line numbers to which control is
transferred depending on the

evaluated expression

The line numbers always correspond to the value of the expression.

If the expression evaluates to 1, control is transferred to

line_number_1. If the expression evaluates to 2, controlis
transferred to line_number_2, and so on to line_number_N.

There is no corresponding line numberfor zero (0). Fractional

numbersare truncated to an integer value.

For example, if A%=5, the result of the integer expression A%/3
would truncate from 1 2/3 to a value of1. If there is no

corresponding line number, the next sequential statementafter the

ON GOTOis executed.

The following are valid ON GOTOstatements:

20 ON A% GO TO 100, 200, 300, 400

20 ON ((A%) —5)GOTO 100, 205, 300,515

GOSUB, ON GOSUB,and RETURNStatements

(Subroutines)

A subroutine is a block of statements that performs an operation

and returns control of the program to the point from whichit came.

Including a subroutine in a program allows you to repeat a

sequence of statements in several places without writing the same

statements several times.

In BASIC, you can include more than one subroutine in the same

program. Subroutines are easier to locate and edit if they are

located together, usually near the end of the program.

Thefirst line of a subroutine can be any legal BASIC statement,

including a remark statement. You can nest subroutines (one

subroutine within another) up to the point that memory becomes

insufficient to keep the return information for the subroutines.

The GOSUBstatement has the following format:

GOSUB line_number

where:

line_number =
line numberof the entry point in the subroutine;

can be aninteger constantor integer

expression.

If the result of the expression value does not match a line numberin

the task, execution falls through to the next sequential statement

after the GOSUB. Noerroris reported.

When BASIC executes the GOSUB statement, it stores internally the

location of the next sequential statement after the GOSUB and

transfers control to the line specified. BASIC executes the subroutine

until it encounters a RETURN statement, which causes BASIC to

transfer control back to the statement immediately following the

calling GOSUB statement. A subroutine called by a GOSUB must

exit by a RETURNstatement.

The RETURNstatementhasthe following format:

RETURN

When BASIC executes a GOSUB,it stores the return location of the

statement following a GOSUB.

Each time a GOSUBis executed, BASIC stores anotherlocation.

Each time a RETURNis executed,BASIC retrieves the last location

and transfers controlto it. In this way, no matter how many

subroutines there are or how manytimesthey are called, BASIC

always knows whereto transfer control.

100 IF MOTOR_SPEED%<JOG_SPEED% THEN 80
110 GOSUB 200
120...
130...
140...

200 ! THIS IS A COMMENT
210 MOTOR_SPEED%=MOTOR_SPEED%_-+(GAIN%/2)

290 RETURN
The ON GOSUBstatementhas the following format:

ON integer_expression GOSUBline number_1,...,line number_N

where:

integer_expression =

any arithmetic expression that results in an

integer value

line_number_1,..., line_number_N =
line numbers to which control is transferred

depending on the evaluated expression

Line numbers always correspondto the value of the expression. The

value 1 transfers controlto the first line numberlisted. The value 2

transfers control to the second line numberlisted, etc. There is no

corresponding line numberfor zero (0). Fractional numbers are

truncated to an integer value. If no corresponding line numberexists

for the result of the integer expression, controlfalls to the next

sequential statement after the ON GOSUB. When a RETURNis

executed from one of the subroutines referenced in the ON GOSUB,

it returns to the next statement after the ON GOSUB.

The following are valid ON GOSUB statements:

20 ON (A% + B% + C%) GOSUB 103,220,475,650
30 ON GAIN% GOSUB 200,300,400,500

6-11

6.4.4 IF-THEN-ELSE Statement

The IF-THEN-ELSEstatementprovidesa transfer of control based

on the result of a relational or comparison expression. It is one of the

most frequently used statements in a BASIC application task.

The IF-THEN-ELSEstatement has the following format:

IF expression THEN

statement(s)

ELSE
statement(s)

END_IF

where:

expression = boolean variable orvalid relational expression

statement = statementor series of statements separated by

backslashes orcolons,or a line numberto

whichto transfer control. If a line numberis

used, it must be defined by a GOTO statement.

If the expression following IF is evaluated as

true, all statements are executed. If a line

numberis used instead of a statement, it can be

larger or smaller than the line numberof the

IF-THEN-ELSE statement.

The IF-THEN-ELSEstatement does notallow the line continuator

symbol (&). Any numberof IF-THEN-ELSE statements can be

nested if they are balanced properly.If there is no alternative to

follow the statement following THEN, do not use the ELSE keyword.

The following are valid IF-THEN-ELSE statements:

50 IF MOTOR_SPEED% = 50 THEN
PRINT JOG_SPEED%

ELSE
PRINT MOTOR_SPEED%

END_IF
300IF MOTOR_SPEED% > JOG_SPEED% THEN

GOTO 700
ELSE

GOTO 600
END_IF

400 IF (A > 3) THEN
A=A-12

ELSE
IF (B > C) THEN

C=D-— 33.2
ELSE
C=D+ 12.998

END_IF
B=B*A

END_IF

The following are invalid IF-THEN-ELSE statements:

130 IF SWITCH_34% THEN
GOTO 300

6-12

6.5

(SWITCH_34% is not a boolean variable or a valid

relational expression)

1501IF A% > B% THEN GOTO 700
ELSE GOTO 400
END_IF
(The keyword THEN mustbethelast item onthefirst line)

Note that Version 2.0 andlater of the AutoMax Programming

Executive supports both the IF-THEN-ELSEformat described above

and the IF-THEN format used in Version 1.0 of the AutoMax

Programming Executive (M/N 57C304-57C307). Version 1.0,
however, supports only the IF-THEN format.

Program Looping

A loop is the repeated execution of a set of statements. Placing a

loop in a program saves you from duplicating routines and

enlarging a program unnecessarily.

For example, the following two programswill print the numbers from

1 to 10:

Program Without Loop Program With Loop

10 PRINT 1 101% =1
20 PRINT 2 20 PRINT 1%
30 PRINT 3 30 1% = 1% +1
40 PRINT 4 40 IF I% < = 10 THEN 20
50 PRINT 5 50 END
60 PRINT 6
70 PRINT 7
80 PRINT 8
90 PRINT 9
100 PRINT 10
110 END

Both of these programs would result in the following being printed:

2
3
4

5
6
7

8
9
10

The program with a loopfirst initializes a control variable, 1%, in line

10. It then executes the bodyof the loop, line 20. Finally, it

increments the control variable in line 30 and comparesit to a final

value in line 40.

Without some sort of terminating condition, a program can run

through a loop indefinitely. The FOR and NEXTstatements set up a

loop wherein BASIC tests for a condition automatically each time it

runs through the loop. You decide how manytimes you want the

loop to run and you set the terminating condition.

The FOR statementhasthe following format:

FOR variable = expression_1 TO expression_2 {STEP

expression_3}

6-13

where:

variable = simple numeric variable known as the loop index.

expression_1 = initial value of the index; can be any

numeric expression.

expression_2 = terminating condition; can be any

numeric expression.

expression_3 = incremental value of the index; the STEPsize

is optional. If specified, it can be positive or

negative; if not specified, the default is +1.

Expression_3 can be any numeric expression.

The NEXT statement hasthe following format:

NEXTvariable

where:

variable = same variable namedin the corresponding FOR

statement

The FOR and NEXT statements must be used together. You cannot

use one without the other. If you do, the program cannot be

compiled. The FOR statement defines the beginning of the loop; the

NEXT statement defines the end. Place the statements you want

repeated between the FOR and NEXTstatements. You are actually

building a counter in your program to determine the numberof

times the loop is to execute when you use FOR and NEXT.

Here is a simple FOR-NEXT statement example:

20 FOR M% = 30 TO 90 STEP 3

30...

40...

50 NEXT M%

M% is given theinitial value of 30, and BASIC tests to determineif

M% is less than or equal to the terminating value of 90. The loop is

executed because M% is less than 90. When the NEXT statementis

encountered, the value of M% is incremented by 3. BASIC goes

backto line 20 and tests again to see if M% is greater than 90. When

BASIC reaches the NEXT statement and M% hasa value of 87,

BASIC adds 3 to M% andtests the result against the terminating

value. The result, 90, is not greater than the terminating value of 90,

so BASIC executes the loop again. When BASIC reaches the NEXT

statement again, it adds 3 to M%, producing 93. Becausethis is

greater than the terminating value, BASIC terminates the loop by

transferring control to the next sequential statement after the NEXT

statement.

The following program will print the numbers 1 through 11 as shown

below the programlisting:

10 FOR I% = 1TO10

20 PRINT 1%

30 NEXT 1%

40 PRINT 1%

50 END

2

3

+
r
O
M
A
N
O
O

A

0

11

In the above program, theinitial value of the index variable is 1. The

terminating value is 10, and the STEPsize is + 1(the default). Every

time BASIC goesto line 30,it increments the loop index by 1 (the

STEPsize) until the terminating condition is satisfied. The

terminating condition is satisfied when the control variable is greater

than 10. Therefore, this program prints the values of I% ten times.

Whenthe loop is completed, execution proceedsto line 40 and

prints 1% again which has been incremented already to 11. When

control passes from the loop, the last value of the loop variable is

retained. Therefore, 1% equals 11 on line 40.

You can modify the index variable within the loop. The loopin the

program below only executes once becauseatline 20 the value of

1% is changed to 44 and the terminating condition is reached.

10 FOR 1% = 2 TO 44 STEP 2

20 LET I% = 44

30 NEXT 1%

40 END

If the initial value of the index variable is greater than the terminal

value, the loop is never executed. The loop below ontheleft cannot

execute because you cannot decrease 20 to 2 with increments of

+2. You can, however, accomplish this with increments of —2 as

shownin the right loop.

10 FOR 1 = 20TO2 STEP 2 10 FOR 1 = 20TO2
STEP —2

It is possible to jump out of a FOR loopthat has been started or

executed at least once, but you should not transfer control into a

FORloopthat has not beeninitialized by executing the FOR

statement. It will result in a fatal error during run time and the task

will be stopped. Thefollowingisillegal in a BASIC task becauseline

20 shifts control to line 40, bypassing line 30:

10! THIS IS ILLEGAL

20 GO TO 40

30 FOR I=1 TO 20

40 PRINT |

50 NEXT |

60 END

FOR and NEXTstatements can be placed anywhere in a

multi-statementline:

10 FOR I%=1 TO 10 STEP 5\ PRINT1%\ NEXT1%

20 END

6-15

6-16

A loop can contain one or more loops provided that each inner loop

is completely contained within the outer loop. Using one loop within

anotheris called nesting. Each loop within a nest must containits

own FORand NEXTstatements. Theinner loop, the onethat starts

first, must terminate before the outer loop, which must be completed

last. Loops cannotoverlap.

The following are two legal nested loops:

10 FOR A%=1% TO 10% 10 FOR A%=1 TO 10

20 FOR B=2 TO 20 20 FOR B=2 TO 20

30 NEXT B 30 NEXT B

40 NEXT A% 40 FOR C%=3 TO 30

50 FOR D=4 TO 40

60 FOR E=5 TO 50

70 NEXT E

80 NEXT D

90 NEXT C%

100 NEXT A%

The following is a program with a legal nested loop:

10 PRINT “I”, U”

15 PRINT

20 FOR I%=1 TO 2

30 FOR J%=1 TO 3

35 |!

40 PRINT 1%,J% ___ Inside | Outside

45 | Loop Loop

50 NEXT J%

60 NEXT 1%

70 END

Running the above program would display:

IJ

11

12

13 —4 |_ Inside

21 ——— Loop
22

23

The following is an illegal nested loop because the inner loop does

not terminatefirst:

10 FOR M=1 TO 10

20 FOR N=2 TO 20

30 NEXT M

40 NEXT N

FOR and NEXTstatements are commonly usedtoinitialize arrays.

Asillustrated in this example, line 5 defines a local array with 6 rows

and 11 columns. For more information, see section 6.1.1.

5 LOCAL X%(5,10)
10 FOR A%=1 TO 5

6.6

6.6.1

20 FOR B%=2 TO 10 STEP 2

30 X%(A%,B%)=A% + B%

40 NEXT B%

50 NEXT A%

60 END

Statements Usedfor
Multi-Tasking Applications

The typical control application has a variety of functions to perform

and monitor. All of these functions require the attention of the CPU,

or Processor module. To better service these different functions,

BASIC provides a numberof multi-tasking capabilities. Multi-tasking

is ascheme wherebythe operations requiring service are grouped

into separate pieces called tasks.

AutoMax Enhanced BASIC providesthe following statements to

allow the user to break the control application into tasks and then

synchronize those tasks:

1. EVENT statement

2. SET statement

3. WAIT statement

4. OPEN CHANNELstatement (INPUT/PRINT channel).

EVENT NAMEStatement

An event can be thought of simply as flag or indicator that one

task can set or raise and another task can wait for. There are two

types of events used in a BASIC task:

1. Hardware events

2. Software events

Hardware events are generated by an actual external condition,

such as aninterrupt from a Resolver module (M/N 570411).
Hardware events cannot be used on the AutoMax PC3000. See
Appendix C for information on allocating hardwareinterruptlines. A

software event is simply a flag set by an application task.

An EVENT NAME statementdefines a specific event and is used in

conjunction with the SET and WAIT statements. The EVENT

statement defines a symbolic namefor an event. The SET and WAIT

statements act on that event. The EVENTstatement has two

formats, one for a hardware event and onefor a software event:

Software Event

EVENT NAME = event_name

Hardware Event

EVENT NAME= event_name, &
INTERRUPT_STATUS = |/O_variable_name, &
TIMEOUT = timeout_count

6-17

where:

event_name =
symbolic namegiven to that particular event and the

“handle” for further references to that event; not followed

by a terminating character.

\/O_variable_name =
name of a symbol referenced as commonin the

application task and defined in the configuration task by

an IODEFstatement. This variable is defined in the
configuration task to point to the addressof an interrupt

register on a hardware module that supports hardware

interrupts.

timeout_count =
the longest time that should pass before a hardware event

occurs. This is used as a safeguard in the case where

something has happened to the piece of hardware that

generates the event. If this timeout period is exceeded

before the eventis triggered, the system will automatically
stop the task. The numberspecified for the timeout period

must be an integerin the range 1-32767 and will always

refer to the numberof TICKS. Thetickrate is

user-definable for each Processor being used. The range

is 0.5 milliseconds to 10 milliseconds. The default tick rate

is 5.5 milliseconds.

The following example defines a hardware event whereslot 8,

register 2, defines the addressof an interrupt register on a resolver

module in the main chassis:

Configuration task:

10 IODEF RESOLVER_INTREG%[SLOT=8,REGISTER=2]

BASIC task:

10 COMMON RESOLVER_INTREG%

95 EVENT NAME=MARKER_PULSE, &
INTERRUPT_STATUS=RESOLVER_INTREG%, &
TIMEOUT=100

255 IF CONSTANT_SPEED@ THEN &
WAIT ON MARKER PULSE

The following example defines a software eventfor a local

BASIC task:

95 EVENT NAME=SW_EVENT1

255 IF CONSTANT_SPEED@ THEN WAIT ON SW_EVENT1

6-18

6.6.2

Notethat it is possible to disable the timeout period for a hardware

event. Disable the timeout for I/O modulesthat, unlike the Resolver

module, do not generate a periodic interrupt. This format of the

event definition should be used carefully since the timeout provides

an extra level of protection in the event of a hardwarefailure. The

following is the alternate hardware EVENT NAMEformat:

EVENT NAME=event_name, &
INTERRUPT_STATUS = |/O_variable_name, &
TIMEOUT = DISABLED

Example:

10 COMMONIO_INT_REG%

90 EVENT NAME=HW_EV1, &
INTERRUPT_STATUS=IO_INT_REG%, &
TIMEOUT=DISABLED

The formatis identical to that for a hardware event except that the

word “DISABLED?”is entered in place of an integer constantfor the

timeout period. The timeout field cannot beleft off or set to zero (0).

This forces the userto turn off the timeout by entering the word

“DISABLED”.

Note that the limit on the number of hardware and software events in

all tasks in a rackis 32.

SET and WAIT ON Statements

The SET statement is used to set an eventorindicate that it has

occurred. Executing this statement makes any other tasks that were

suspended while waiting for that event to occur(or setting of that

event) eligible to run. WAIT ON causestask execution to stop until

the EVENT NAMEis set by the SET statement. The format of the

SET statementis:

SET event_name

where:

event_name =
nameof the hardware or software event previously defined by at

least one task

The format of the WAIT ON statementis:

WAIT ON event_name

where:

event_name =
previously defined by at least one task; sameas the

corresponding SET statement.

The following is an example of EVENT NAME,SET, and WAIT ON

statements. Task ABC is performing a calculation every 40

milli-seconds. Task XYZ is suspended waiting for event GAIN_OVER

to occur so that it can perform some calculations of its own. Task

XYZ needs to run only when event GAIN_OVERoccurs, which,in

this example,will indicate that the variable GAIN is beyond a certain

maximum.

6-19

Task ABC

10 EVENT NAME=GAIN_OVER

90 IF GAIN>MAX_GAIN THEN SET GAIN_OVER

Task XYZ

30 EVENT NAME=GAIN_OVER

105 WAIT ON GAIN_OVER

6.6.3 OPEN CHANNELStatement

The OPEN CHANNELstatement equates a logical namewith a data

channel between twoapplication tasks in the system. This statement

enables tasks to communicate with each other using INPUT and

PRINT statements. When a channel is opened between two tasks

and onetask PRINTsto the other, the information is going to the

waiting task, not to a printer or serial port. When one task INPUTs

data from another, the data is being read from the other task that

has opened the channel.

The OPEN CHANNELstatement has two formats depending upon

whichtaskit is being used in. The task sending data through the

channel must use the OPEN CHANNEL FOR OUTPUTformat. The
task reading data from the channel must use the OPEN CHANNEL

FOR INPUTformat. Multiple tasks can open the samechannelfor

output purposes and write datato it, but only one channel may open

the channelfor input purposes and read from it.

Formatfor task writing to a channel:

OPEN CHANNEL FOR OUTPUTASFILE #n, TYPE = (type)

Format for task reading from a channel:

OPEN CHANNELFORINPUT ASFILE #n, TYPE = (type), DEPTH = depth

n = logical numberassigned to the channel; range = 1-255;

the PRINT and INPUT statements must reference the same

numberto identify this particular channel.

type = variable typeorlist of types that are to be passed through

the channel; multiple types must be separated by a

comma;this information allows the system to format each

piece of data whenit passesit from one task to another.

I single integer

D = double integer

R = real

S = string

B = boolean

6-20

Any combination of the above variable types is permitted;

however, a PRINT to or INPUT from this specific channel

must always pass the same numberand type of variables

and in the sameorderthat the typefield specifies.

depth = how many messagesthis channel can hold beforeit is

consideredfull; this value must be an integer constant or

expression; specified only for the OPEN CHANNEL

statementin the task that is reading from the channel.

The task that is reading data(i.e., that contains the OPEN CHANNEL

FOR INPUTstatement), creates the channel. If a task that is writing

data to a channel runs before the task that is reading data from the

channel, the task writing data is suspended until the task thatis

reading data runs.

If a task tries to write data to a channelthatis full (has reached the

maximum DEPTH), then that task will be suspended until one of the

queued messagesis read by the task reading from the channel. Ifa

task attempts to read from a channel which is empty, that taskwill

be suspendeduntil a message has been placedin the channel.

Note that the INPUT statement has a parameter (EMPTY)that allows

the task reading from the channelto transfer control to anotherline if

the channel is empty. The PRINT statement has a parameter (FULL)

that allows the task writing to the channelto transfer control to

anotherline if the channelis full.

Reading and writing to a channel can be used to synchronize

activities between two or moretasks. For example, task 1 could

perform someinitialization and then INPUT from a channel. If the

channel is empty the task will be suspended until another task

PRINTs to the channel. Task 1 could then become active again when

one of several other tasks PRINTs information into the channel (such

as error or warning conditions). Task 1 could then record this

information and INPUT from the channel again, suspending the task

until more information is available.

The following are two examples of OPEN CHANNELstatements and

the corresponding INPUT and PRINT statements from that channel:

Task ABC

10 OPEN CHANNEL FOR OUTPUTASFILE #1, TYPE = (1,1,S,R)

95 PRINT #1, (GAIN%* 13),SPEED%,MESSAGE$,RATIO

Task XYZ

15 OPEN CHANNEL FORINPUT ASFILE #1, TYPE = (1,1,S,R), DEPTH = 10

75 INPUT#1 ,NEW_GAIN%,CALC_SPEED%,TEXT$,RATIO

Note that the PRINT and INPUT statements have the same format

here as when they are used to accessa device, except that OPEN

CHANNELis used to define the logical channel numberinstead of

OPEN “device_name.” See section 6.8.

6-21

6.7

6.7.1

6-22

Tasks do not haveto call the variables by the same names when

reading and writing to the channel; they simply write an integer

quantity (for an integer position in the template) and read an integer

quantity into an integer variable. Note that, just like the normalprint

operation, the printlist of items may contain any kind of expression,

whichwill be evaluated first and then printed. The numberof items

and their data types used in a print or input to a channel must match

the OPEN CHANNELdefinition; otherwise, an errorwill occur.

A CLOSEstatementis not used with a channel because onceitis

opened, it remains open. There is no provision to open and then

close channels.

Real Time Enhancements

BASIC provides two statements that allow specified sections of

tasks to be executed at a knowntime.

1. DELAY statement

2. START statement

DELAY Statement

The DELAY statement provides for a simple time delay in a task.

The following is the DELAY statement format:

DELAY n time_units

where:

n = any arithmetic expression or constant that evaluates to

an integer result

time_units = unit of time to be delayed

The possible time units for both the DELAY and the START

statement are TICKS, SECONDS, MINUTES, and HOURS.Thetick

rate is user-definable for each Processor being used. The rangeis

0.5 milliseconds to 10 milliseconds. The default tick rate is 5.5

milliseconds. The plural form of the time unit must always be used,

even whenreferring to one unit, e¢.g., DELAY 1 HOURS.

The following are valid DELAY statements:

30 DELAY 255 TICKS

80 DELAY ((OLD_TICKS%—2)*5) SECONDS

15 DELAY (1ST_SHIFT_LNG%) HOURS

40 DELAY 1 HOURS

In each of the above examples, when the DELAY statement

executes, the task will be suspended at that point for the specified

amountof time and then beeligible to run whenthe time interval

expires. At that time, the task begins execution at the line following

the DELAY statement.

6.7.2 START EVERYStatement

The START EVERY statementformatis similar to the DELAY

statement format but is used to do a periodic re-start or scan of the

task. The format of the START statementis:

START EVERYn time_units

where:

n = any arithmetic expression or constant that evaluates to

an integer result

time_units = unit of time to be delayed before starting

The possible time units for both the START and the DELAY

statements are ticks, seconds, minutes, and hours. Thetick rate is

user-definable for each Processor being used. The rangeis 0.5

milliseconds to 10 milliseconds. The default tick rate is 5.5

milliseconds. The plural form of the time unit must always be used,

e.g., DELAY 1 HOURS.

Whena START EVERYstatement executes, it notifies the operating

system that the task needsto be re-started “n time units” from now,

starting with the statement following the START EVERY statement.

After notifying the operating system, control is passed back to the

task, which continues to execute. The task will eventually execute an

END statement, which causesthat task to relinquish control. When

the time interval in the START EVERYstatement expires, the

operating system makesthat taskeligible to run. It will run unless

there is a higherpriority task eligible to run.

The point in time when the task begins executing again is based on

howlong the task runs after the START is encountered and before

an END statement is executed. Consider the following example:

10...

20...

200 START EVERY 20 TICKS __W__—Ss This bodyofthe pro-
gram will be eligible

|_ to run every 20 ticks
. starting after the START

350 END EVERYstatement.

The DELAYstatementtells the operating system to stop the task

whereit is and continue runningit after a certain length of time.The

START EVERYstatementeffectively defines for the operating system

a re-start point and a time interval. The operating system will

automatically start the task at the next statement after the START

EVERYwhenthat time period expires. The execution time required

for program body between the START EVERY and the END

statements must not be longer than the specified time period or an

overlap error will occur.

By using the START EVERYstatement, the programmer can

program tasks to be scanned at a certain frequency, enabling him to

do the slower control loop functions in BASICif he desires.

However, BASIC may be too slow to accommodate some high

speed control requirements. For most applications Control Block

language should be used. For more information, refer to the

AutoMax Control Block Language Instruction Manual (J-3676).

6-23

6.8

6.8.1

6-24

Communication Capabilities

BASIC communicates with other processing elements in a system,

including operator’s terminals and other application tasks, using the

following statements. A numberof these statements access

Processorserial ports.

1. OPENstatement

CLOSEstatement

INPUT statement

PRINT/PRINT USING statement

IOWRITEstatement

GET statement

PUT statement

READstatement

DATAstatement

10. RESTOREstatement

oO
M
N
A
a

F
WO

ND

OPENStatement

The OPENstatementallocates a Processorport to allow application

tasks to communicate with an external device such as a personal

computer. Once you allocate a port, you can use the INPUT, PRINT,

GET, or PUT statements to communicate through the port.

Depending on the port you are allocating, you may also need to use

the CLOSE statement in conjunction with the OPEN statement.

You can allocate a port only in a task running on the Processorthat

contains the port. The OPEN statement cannot be used to

communicate with other tasks. See the OPEN CHANNELstatement

description in section 6.6.3 for information aboutinter-task

communication.

Ports You Can Use for Serial Communication

Multibus rack-based Processor modules have twoserial ports,

labeled “PROGRAMMER/PORTB” and “PORT A’, reading top to
bottom. Use the PROGRAMMER/PORTB port for connecting the

Processorto the personal computer running the AutoMax

Programming Executive software. The other port, PORTA,is

available for use by application tasks.If there are multiple Processor

modulesin the rack, only the leftmost PROGRAMMER/PORTB port

is reserved for communicating with the Executive software. All other

Processorports in the rack are available for use by application

tasks.

The PC3000 Processoralso has two serial communication ports.

The 25-pin D-shell port works exactly like the PROGRAMMER/PORT

B port on the rack-based Processor described above. The 9-pin port

workslike the

PORTA port on the rack-based Processor. On the PC3000, however,

both ports may be available for communication with external

devices, depending on the setting of jumper JP2. Refer to the

PG3000 User Manual, J2-3096, for more information on setting the
jumper.

Differences BetweenAllocating Ports A and B

How you use the OPEN statement depends on whetherit is being

used with port A or port B. For port A, the OPEN statementis only

used to change the default setup and baud rate for the port. For port

B, the OPENstatement is used to change the default setup and

baud rate and to allocate the port. Port B must be allocated using

the OPENstatementprior to using any of the serial port statements

to communicate through the port.

OPENStatement Format Used To Modify Port Setup

Characteristics

OPEN “device_name”AS FILE #logical_device_number,
SETUP=specs, baud_rate

OPENStatement Format UsedTo SetPort Allocation Status

OPEN “device_name”AS FILE #logical_device_number,
ACCESS=status

where:

device_name =

The pre-assigned nameof the port; PORTAfor port A or PORTB

for port B.

logical_device_number =

The numberassigned to the port in the OPEN statement. The #

symbolis required. Range: 1-255.

The number used whenreferencing port A or port B in the

CLOSEstatement. See Configuring and Using Port A and
Configuring and Using Port B, below.

The number used whenreferencing port B in the INPUT, PRINT,

GET, and PUT statements. See Configuring and Using Port B,

below.

specs =

A hexadecimal single word constant or integer expressionbit

pattern that defines various characteristics for the port. The bit

positions are defined below. The parameters SETUP and

ACCESScannot be specified in the same OPENstatement.

The default setting is ODOO (hex). Bits 0-7 of the word specify the

terminating characterfor the INPUT statement as a hex value for

the ASCII character. The specified terminating character must be

an ASCII value between 20 hex and 7E hex. Using an ASCII

value outside this range causes the error message “Invalid

string character received” to be logged whenthe INPUT

statement reads data from the serial port. If these bits are left at

zero (0), the default input termination character, a carriage return

(0D hex), is used.

Whensoftware handshaking (CON, X-OFF) is enabled, XOFF

(CTRL-S, 13 hex) will be sent when morethan nine characters

are in the receive buffer. When a task (INPUT or GET statement)

empties the receive buffer, XON (CTRL-Q, 11 hex) will be sent.

The ASCII characters X-OFF or X-ON can not be transmitted as

user data because they would beinterpreted as flow control

commanas,not userdata.

6-25

6-26

Whenhardware handshaking is enabled for a port, the DTR

(Data Terminal Ready) pin on the Processorport is false when

more than 53 characters are in the receive buffer. The DTR pin

on the Processorport is true when the receive buffer is emptied.

Refer to the appropriate Processor manualfor the port wiring

required for hardware handshaking.

Note: The DSR pin on the Processorport must be true when

hardware handshaking has been enabled. True is defined as +5

to +12 volts andfalse is defined as —5 to —12 volts.

The RTS (Transmit Status, Modem Enable) pin on the Processor

port can be controlled in an application task by using the

RTS_CONTROL@ function or by the operating system if

hardware handshaking has been enabled.

The purpose of the RTSsignalis to “bracket” the character

transmission. To bracket a character transmission, RTS must be

set true prior to the first character being transmitted and remain

true until all of the characters have been transmitted. The RTS

signal can be used to enable/disable any type of external
equipment, suchasa tri-state transmit modem, which requires

an enable signal to output characters.

Whenhardware handshaking has been enabled for a port, the

operating system will automatically bracket the character

transmission. RTS is set true whendata is loaded into the

transmit buffer and remainstrue until all the characters have

beentransmitted.

If the external equipment being controlled requires an

enable/disable time of more than 1 msec, RTS must be

controlled in an application task using the

RTS_CONTROL@function. Refer to the RTS_CONTROL@
function for a description of the operation and an example

program.

If hardware handshaking is enabled and RTSis set true using

RTS_CONTROL@,RTS will remain true after all the characters

have been transmitted so that the application task can use

RTS_CONTROLG@tosetit false.

hex number
1

OPTIONAL TERMINATION CHARACTER
FOR INPUT STATEMENTS

XON,X-OFF HANDSHAKE ENABLED(D)
XON, X-OFF HANDSHAKE DISABLED

HARD COPY DEVICE
NON-HARD COPYDEVICE (D)

ECHO ON (D)
ECHO OFF

8 BIT CHARACTERS(D)
7 BIT CHARACTERS

EVEN PARITY
ODD PARITY (D)

PARITY ENABLED
PARITY DISABLED(D)

2 STOP BITS
1 STOPBIT (D)

HARDWARE HANDSHAKING ENABLED

o
o

 o
o

o
o

o
o

o
-

O
o
-
O
-

o
o

(D) = default
HARDWARE HANDSHAKING DISABLED(D)

baud_rate =

134, 150, 200, 300, 600, 1200 (default), 1800, 2400, 4800, 9600,
and 19200 (19,200 for Processor module M/N 570435 and
PG3000 Serial Option card). The baud rate must be specified if
the SETUP parameteris specified.

status =

Required only when using port B on a Processor. See
Configuring and Using Port B, below,for details. An optional
parameter. Specify as NON_EXCLUSIVE when morethan one
task in the Processor must have accessto port B. The
parameters SETUP and ACCESScannot be specified in the
same OPENstatement.

If the ACCESS parameteris not specified, the access statusis
EXCLUSIVE.If the status is EXCLUSIVE,no other task can read
or write to the port until the port is closed. Refer to Configuring
and Using Port B, below,for details.

Configuring and Using PORTA

For port A, the Processor’s operating system allocates and

de-allocates the port for access by anytask in the Processor without

using an OPENstatementin any task. The operating system will

automatically allocate the port before executing the INPUT, PRINT,

GET or PUT statements and de-allocate the port after executing the

statements. It will manage the port allocation and error handling

between tasks without any software interlocking being added in any

of the tasks.

If the operating system default port setup and baud rate described

are acceptable for your application, you can simply use the INPUT,

PRINT, GET, or PUT statements in any task on the Processorto

communicate through port A.

6-27

6-28

If the default setup or baud rate are not suitable for your application,

use the following OPEN statement format to temporarily allocate the

port for EXCLUSIVE access to changethe default setup or baud

rate. This changes the default characteristics of the port until the

next power cycle or Stop-All-Clear occurs. Use the CLOSE

statement to de-allocate the port. The CLOSE statement mustfollow

the OPENstatement with no intervening INPUT, PRINT, GET or PUT

statements. The CLOSE statement must use the same device

numberassigned in the OPENstatement.

OPEN “PORTA’ASFILE #logical_device_number, SETUP=specs,
baud_rate \&

CLOSE #logical_device_number

Note: When an OPENstatement has a setup parameter, the port is

opened with EXCLUSIVE access. Therefore, specifying

ACCESS=NON_EXCLUSIVE causes a compile error to be logged.It
is not necessary to OPEN port A for NON_EXCLUSIVEaccess;this is

the default mode of operation. Do NOTuse the device number

assigned in the OPEN statement to accessthe port in any

subsequent INPUT, PRINT, GET or PUT statements because the port

has been de-allocated by the CLOSE statement above.

Examples:

INPUT INP%

INPUT:EMPTY=line_no, INP%

PRINT MSG$

GET CHAR$

GET:EMPTY=line_no, CHAR$

PUT CHAR$

Port A - Application Notes

1. Use port A instead of port B whenport A is available because

the operating system managesport allocation and error

handling between tasks.

2. “OPEN”the port to set required port characteristics, “CLOSE”

the port, then use INPUT, PRINT, GET and PUT statements

without a device numberin any task to access portA.

All tasks have only NON_EXCLUSIVEaccessto the port.

The port is opened and closed after each operation.

Stop-All-Clear commands and powercycle closeall ports. The

port characteristics are set to OS default. The user mustset the

port to the required characteristics.

Stopping a task does not change the port setup and baudrate.

Errors logged to task information (for example, Framing,

Overrun, etc.) will have no major effect because the port is

opened and closed after each operation.

8. The serial port statements Print, Input, Put, and Get will operate

after an error has been logged because the port is opened and

closed after each operation.

Programming Example

The following example uses two tasks on the Processorto transmit

and receive data from port A. KYBD.BASsets the characteristics for

port A and then closes the port. If USERNAMESis blank, KYBD.BAS

prompts the user to enter his name. DISPLAY.BAS displays the

message “Hello World” and the user name if USERNAMESis not

blank. Because KYBD.BASclosesthe port after setting the port

characteristics, any task in the Processor can access (read from or

write to) the port without using a logical device numberwith the

INPUT, PRINT, GET or PUT statements.

{KYBD.BAStask}

100 COMMON USERNAME$

900 USERNAMES= “”

1000 OPEN “PORTA’ASFILE #1, SETUP=(0800H,
9600) \ CLOSE #1

2000 IF USERNAME$ = “” THEN

PRINT ; CLRSCR$(2); CURPOS$(10,10);
“Please enter your name “;

INPUT USERNAME$

END_IF

2100 DELAY 10 TICKS \ GOTO 2000

32767 END

{DISPLAY.BAS}

100 COMMON USERNAME$

900 USERNAMES = “”

2000 IF USERNAME$ <> “” THEN

PRINT ; CURPOS$(20,10); “Hello World, my
nameis “; USERNAME$;

DELAY 5 SECONDS\ USERNAMES= “”

END_IF

2100 DELAY 10 TICKS \ GOTO 2000

32767 END

6-29

6-30

Configuring and Using PORT B

For port B, you must use the OPENstatementin a taskto allocate

the port before the task can communicate through the port, evenif

the default port setup and baud rate are acceptable for your

application.

If the default setup or baud rate are not suitable for your application,

use the following OPEN statement format to temporarily allocate the

port for EXCLUSIVE access to changethe default setup or baud

rate. This changes the default characteristics of the port until the

next power cycle or Stop-All-Clear occurs. Use the CLOSE

statement to de-allocate the port. The CLOSE statement mustfollow

the OPENstatement with no intervening INPUT, PRINT, GET or PUT

statements. The CLOSE statement must use the same device

numberassigned in the OPENstatement.

OPEN “PORTB’AS FILE #logical_device_number,
SETUP=specs,baud_rate \&

CLOSE #logical_device_number

Note: When an OPENstatement has a setup parameter, the port is

opened with EXCLUSIVE access. Therefore, specifying

ACCESS=NON_EXCLUSIVE causes a compile error to be logged. A
second OPENstatement must be addedafter the port is closed as

shown below.

If the default or configured port setup and baud rate are properfor

your application, use the following OPEN statement format to

allocate the port for NON_EXCLUSIVEaccessso the task can
communicate through the port. The port must remain open to

execute subsequent INPUT, PRINT, GET, or PUT statements.

OPEN “PORTB’AS FILE #logical_device_number,
ACCESS=NON_EXCLUSIVE

The format of the INPUT, PRINT, GET, or PUT statements used to

communicate through the port is INPUT #, PRINT #, GET # or PUT

#, where # is the device numberassigned to the port in the OPEN

statement. Wheneveryourefer to the port in subsequent

statements, always use the device numberassigned to the port in

the OPENstatement.

In addition, if you want to makethe port accessible to multiple tasks

in the Processor at the same time, you must add an OPEN

statement with the ACCESS parameterspecified as

NON_EXCLUSIVEin each task that must communicate through the
port using the same logical_device_numberthat was usedto identify

the port in the first task.

You must add software interlocking to each task attempting to

allocate the port to ensure that the task can determine whether the

port setup and baud rate have beeninitialized prior to opening the

port for NON_EXCLUSIVEaccess.Only one task needsto allocate

the port and define the setup and baudrate initially. Software

interlocking is also needed for port error handling. Tasks may need

to close and re-openthe port on error conditions.

Port B Application Notes

1. Port B requires port allocation and error handling to be handled

by the application tasks.

2. “OPEN”the port to set the required port characteristics, then

“CLOSE”the port.

3. “OPEN”the port for NON_EXCLUSIVEaccessin each task that
needs accessto the port. Use the same device number to open

the port in all tasks.

4. Use INPUT #, PRINT #, GET #, and PUT # statements with the

device numberusedin the OPEN statement to accessport B.

5. Stop-All-Clear commands and powercycle closeall ports. Port

characteristics are set to the OS default; the user must set the

port to the required characteristics.

6. Stopping a task does not change the port setup and baudrate.

Stopping a task that has EXCLUSIVE accessto the port closes

the port on the Processor.

8. Stopping a task that has NON_EXCLUSIVEaccessonly disables

accessto the port for the task that was stopped. The other tasks

referencing the port can still transmit or receive data.

9. The operating system does not de-allocate the port (make the

port available for EXCLUSIVEaccess)until all tasks referencing

the port have closed the port.

10. Port errors logged to task information (for example, Framing,

Overrun, etc.) will close the port that logged the error.

11. If the port is closed via CLOSEorerror, then port statements

PRINT, INPUT, PUT and GETwill fail. They will log a “Port Not
Open(properly)” error message and abort the operation. No

data will be sent for PRINT and PUT. INPUT and GETwill not

suspend the task but will proceed to the next statement on the

current line or next line number. INPUT:EMPTY= and

GET:EMPTY= will not branch to the specified EMPTY line

number, but will operate like the INPUT and GET statements

described above.

Programming Example

The following example uses two tasks on the processorto transmit

and receive data from port B. Software interlocking must be added

to each task attempting to allocate the port to ensure that the tasks

can determine whether the port setup and baud rate have been

initialized prior to opening the port for NON_EXCLUSIVEaccess.

KYBD.BASsets the characteristics for port B, closes the port,

re-opensthe port for NON_EXCLUSIVEaccess,and then sets the

softwareinterlocking flag KYBD_RDY@ TRUEso that DISPLAY.BAS

can open the port for NON_EXCLUSIVEaccess.

If USERNAMESis blank, KYBD.BAS prompts the userto enter his

name. DISPLAY.BASdisplays the “Hello World” message and the

user name if USERNAMESis not blank. Because the port must be

opened byeach task that needs accessto the port, the logical

device numberused in the OPEN statement must be used with the

INPUT, PRINT, GET or PUT statements.

6-31

6-32

{KYBD.BAStask}

100

110

900

910

1000

1100

1110

1120

1200

1210

2000

2100

32767

{DISPLAY.BAS}
100

110

900

910

1000

1010

1200

1210

1220

2000

2100

32767

COMMON USERNAME$

COMMONKYBD_RDY@, DISP_RDY@

USERNAME$ = “”

KYBD_RDY@ = FALSE

IF DISP_RDY@ THEN DELAY 10 TICKS \ GOTO
1000

OPEN “PORTB’AS FILE #2, SETUP=(0800H,
9600) \ CLOSE #2

OPEN “PORTB’AS FILE #2,
ACCESS=NON_EXCLUSIVE

! Add initialization code as required

KYBD_RDY@ = TRUE

IF NOT DISP_RDY@ THEN DELAY10 TICKS \
GOTO 1210

IF USERNAME$ = “” THEN

PRINT #2; CLRSCR$(2); CURPOS§(10,10);
“Please enter your name “;

INPUT #2 USERNAME$

END_IF

DELAY 10 TICKS \ GOTO 2000

END

COMMON USERNAME$

COMMONKYBD_RDY@, DISP_RDY@

USERNAME$ = “”

DISP_RDY@ = FALSE

IF KYBD_RDY@ THEN DELAY 10 TICKS \ GOTO
1000

! Add initialization code as required

IF NOT KYBD_RDY@ THEN DELAY10 TICKS \
GOTO 1200

OPEN “PORTB’AS FILE #2,
ACCESS=NON_EXCLUSIVE

DISP_RDY@ = TRUE

IF USERNAME$ <> “” THEN

PRINT #2 ; CURPOS$(20,10); “Hello World,
my nameis “; USERNAME$;

DELAY 5 SECONDS\ USERNAME$= “”
END_IF
DELAY 10 TICKS \ GOTO 2000

END

6.8.2

6.8.3

CLOSEStatement

The CLOSEstatement is used to de-allocate a channel or port to

allow other application tasks to have accessto it. The CLOSE

statement has the following format:

CLOSE #logical_device_number, #logical_
device_number....

where:

logical_device_number = numberassigned to device by OPEN

statement(1 to 255)

The following are valid CLOSE statements:

20 CLOSE #1,#2
99 CLOSE #3

The number symbol (#) must always be presentin front of the

logical device numberassigned to the device.

If PRINT or INPUT statements use the default port (e.g., PRINT F%

or INPUT M$), there is no need for either an OPEN or CLOSE

statement.

Channels that are opened, as opposedto devices, remain opened

until the taskis restarted.

Refer to the OPENstatementdescription (6.8.1) for more informtion

on how the CLOSEstatementis used with the OPEN statement.

INPUT Statement

The INPUT statement is used to prompt an operatorto input data

from a device or channel. It has the format:

INPUT #logical_device_number, input_list

where:

logical_device_number =
numberassigned to device or channel by OPENstatement(1 to

255). Not usedif default device is used.

input_list =
list of variables to be read. Variables can be simple or

subscripted (no expressions).

The optional parameter :EMPTY=n can be usedto transfer control

of the program in the event that the channel is empty. This option is

only allowed for channels and not devices. The parameter is added

immediately after the device number; n is the line number to which

to transfer control.

If more than one variable is to be read, the fields must be separated

by commas whenentered. Any extra spaces or tabs between the

input fields are ignored.

Whenan INPUT statement is executed in BASIC, an input promptis

printed to the deviceto indicate that the system is waiting for

something to be entered. The input prompt is a question mark

followed by a space(’).

The numberof fields requested in the INPUT statement are then

entered at the device, followed by the terminator character (<CR>).

If all of the requested fields are not entered prior to the (<CR>), the

6-33

6-34

system will prompt again, indicating that it is waiting for more data.

The system will also prompt again if the operator enters just a

<CR>byitself. It will reprompt after every <CR> until all the
expected data is received. Note that the receive FIFO queuewill

accept a maximum of 64 bytes. If more than 64 bytes are

received without the queue being emptied, the additional data is

discarded.

In the following example, 3 integerfields are expected by the INPUT

routine, but only 2 are entered thefirst time. BASIC prompts again

for the third numberto be entered. The fields can be separated with

commasor spacesif the promptis off. If the promptis on, eachfield

is separated with <CR>.

In the task:

10 INPUT A%, B%, C%

Onthe display screen:

234,56 <CR>

246 <CR>

?

If you make a mistake while entering data, use the backspace key to

back up the cursor and enter the correct data. Enter <Crtl-U> to

cancel any data ontheline. If the data enteredis totally incorrect,

enter <Ctrl-C> to cancel the INPUT completely. If this is done, none

of the variables in the INPUT statementwill be updated and

execution will continue with the next statement after the INPUT.

Whenthe promptis enabled, certain error messages are displayed

to the userif his input data is invalid. For example, if the statementis

INPUT A% and the value enteredis either out of range (not +32767

to —32768) or of the wrong type(string instead of integer), the

system will prompt:

> >>> >INVALID DATA TYPE - INPUT AGAIN<<<<<<

and re-promptfor data thatwill fit into a single integer (+ 32767 to

— 32768).

You can enable or disable the input prompt by writing to the variable

“PROMPT@”. This symbolis automatically allocated as a local

variable when the task is created. At power-up, it has the value

TRUE (print a prompt character during input). If the value of this

variable is changed to FALSE,the promptis disabled.

You mayfind it desirable to disable the prompt when you are

soliciting input from a personal computer and co not wish to have

the prompt character appearon the display. However, when the

promptis disabled, any input errors that occurwill result in a

run-time error. Program execution will continue with the next

statement. Therefore, when you disable the prompt, you should use

the ON ERROR GOTOstatementto initiate an error-handling routine.

The following are valid INPUT statements:

20 INPUT #1,A%,B%

30 INPUT A%,B%

40 INPUT #3:FULL=80, C%

Itis possible to define a character other than carriage return
(<CR>)as the terminator for data in an INPUT statement. This is

doneby loading the ASCII value of the characterinto the lower 8

6.8.4

bits of the device characteristics word in the SETUP portion of the

OPENstatement. For example, if you wanted to use a question mark

(hexadecimal 3F in ASCII) as the terminating character, you would

openthe device as follows:

OPEN “PORTA’ASFILE #2, SETUP= (OD3FH,1200)

The samerules apply to inputs not terminated by a carriage return

as to the disabled prompt input: no error messages and all data

must be entered at the same time.

Using a different terminator is more usefulfor those tasks

communicating to other devices or computers where the data

transmitted is not terminated with <CR> but another character. This

allows reading data from one of those devices without having to

accumulate the characters one at a time with a GET statement.

Refer to the OPEN statementdescription (6.8.1) for more information

on how the INPUT statementis used with the OPEN statement.

PRINT/PRINT USING Statements

The PRINT and PRINT USING statements are used to communicate

with I/O devices, such as a personal computer, or a line printer, or
another BASIC task. The OPENstatement is used to select to which I/O

port the PRINT/INPUT applies. Refer to the OPENstatement description

(6.8.1) for more information on how the PRINT statement is used with

the OPEN statement. The PRINT statement has the following basic

format (PRINT USINGis defined separately in this section):

PRINT #logical_device_number, print_list

where:

logical_device_number =
logical number(1 to 255) assigned to a device

or channel during an OPENstatement.If no

device numberis given, the default device is

PORTAon the Processor module on whichthis
tasks resides. Most application task I/O will be

handled through this default port.

print_list = list of data items to be printed, such as:

e Integer variables and integer expressions

e Real variables and real expressions

e Boolean variables and boolean expressions

e String variables and string expressions

The optional parameter :FULL=n can be usedto transfer control of

the program in the event that the channelis full. This option is only

allowed for channels and not devices. The parameter is added

immediately after the device number; is the line numberto which

to transfer control.

If the logical_device_numberspecifies a channel and not a device,
the numberand type of items printed must match exactly the

channel template as specified in the OPEN CHANNELstatement.

6-35

6-36

The following is a typical PRINT statement using the default port

(PORTA):

40 PRINT A%,B%, MESSAGE$,C% + D%

The output line would be 13 29 MOTOR53, assuming the following

valuesforthis statement:

A%=13

B%=29

C%=36

D%=17

MESSAGE$ = “MOTOR”

The following are all valid PRINT statements:

5 OPEN CHANNEL FOR OUTPUTAS FILE #6 , TYPE=(S)

10 PRINT #6:FULL=30, STRINGS$

20 PRINT SPEED%,ESTOP_RELAY@,5,7,19*B%

30 PRINT “THIS IS THE REFERENCE”,REFERENCE%

40 PRINT ((SPEED% + GAIN%)/14),B%,C%,GAIN OVR@

50 PRINT #2,A$ + “STUFF” +LEFT$(A$,4)

Note that when a booleanvariable is printed, itis displayed as

“TRUE?”or “FALSE”.

Whenprinting items in BASIC,the individual fields can be separated

in one of two ways: with a commaor a semicolon. If the fields are

separated by a comma,the itemswill be printed right-justified in

“print zones” of 15 character positions wide. The following is an

example:

10 PRINT A%,C!,B@

This prints as follows:

298 12376 FALSE

123456789012345 123456789012345 12345678901 2345*

* Used in this example only to show print zones.

The only exception to this is when a string that is greater than 15

charactersis printed. The print zoneforthat string will be the next

integral multiple of 15 greater than the string length. If the string is 1

to 15 characters, the print zoneis 15. If the length is 16 to 30

characters, the print zone is 30 characters, and so on.

If the itemsin the printlist are separated by a semicolon,the print

fields are separated by a single space unlesstheyare stringfields. If

they are string fields, there are no spaces between them:

10 PRINT ABC%;STRING_1$;STRING_2$,XYZ%;BOOL@

This prints as follows:

567THIS IS STRINGITHIS IS STRING2 98 FALSE

1 SPACE BEFORE BOOLEAN

1 SPACE BEFORE NUMERIC

NO SPACES BEFORESTRING FIELD

NO SPACES BEFORESTRING FIELD

The semicolon can be used at the beginning of a statement to

prevent zoning ofthefirst item printed. The semicolon can also be

used at the end of a PRINT statementto tell BASIC not to advance

the print pointer to the next line after the print occurs but to leaveit

at the end oftheline. This is useful when an INPUT statement

immediately follows the PRINT statement.

In Enhanced BASIC,all decimal numbers have8 digits of

significance. Therefore, only 8 digits can be printed for the number,

whetherit is very small or very large. To print very large numbers or

very small numbers, a scientific or exponential format must be used.

For example, the numbers 1.7634736E+17 and 2.8876582E—09

only have 8 digits of precision printed but use scientific notation to

show the numberof decimal placesto the right or left where the real

decimal point would be placed.

In BASIC, unformatted (using the PRINT statement instead of the

PRINT USING statement) decimal numbersare printed according to

the following rules:

1. BASIC will attempt to locate the decimal point such that there is

no need for an exponent.

Example: 123.45678 or 0.12345678 or 1234567.8

2. If this is not possible, the numberwill arbitrarily be printed with

one numberto theleft of a decimal point and an exponent or

scientific notation will be used.

Example: 3.7836524E+ 12 or 4.8873633E—17

3. If the numberis a true fraction and requires no exponent, there

will always be a leading zero in front of the decimal point.

Example: 0.98272635 or 0.18735354 or —0.87725433

PRINT USING allows youto print numeric fields with a specific

numberof decimal places and field width:

PRINT USING #logical_device_number,formatted_ print_list

where:

logical_device_number =
the logical numberassigned to a device(PRINT

USING to a channelis not permitted) during an

OPENstatement. If no device numberis given,

default device is PORTA on the Processor

module on which the task resides. Most

application task I/O can be handled through

the default port.

6-37

formatted_print_list =
list of formatted data fields

The individual formatted data fields have the following form:

<format_type> <field_width> : <variable>

where:

<format_type> =

Left-Justify the print expression

Right-Justify the print expression

Center the print expressionin thefield

Load leading zerosin front of the print

expression

Print the numericfield in a decimalOo
N
O
D
C

format

<field_width> =
The field width has only one part if the format

type is L/R/C/Z, in which casethefield wicth is

an integer or integer expression from 1 to 132.

If the decimal format D is used, the field width

has 2 parts: <integer1 >.<integer2>

Integer’ is the total field width for the result.

This includes the minus sign (if any), the

numberpart to the left of the decimal point, the

decimal point, and any numberontheright of

the decimal point. This total field may be in the

range 3 to 132.

Integer2 specifies the numberof decimal

placesto the right of the decimal point to be

printed. This number maybe in the range 0 to

26.

Integer1 and integer2 maybe either integer

literals or integer expressions. If expressions

are used, they must be enclosed in

parentheses.

<variable> =

Data item to be printed. Multiple items are

separated by commasor semi-colons. See the

PRINT statement for more information on

commas and semi-colons whenprinting.

The following are PRINT USING examples using the L/R/C/Z
FORMATS:

2

5

10

20

30

40

50

A% = 14\ B% = 26 \ BOOLEAN@ = TRUE

STRING$ = “CHARACTERS”

PRINT USING L40:STRINGS$

PRINT USING R40:STRING$

PRINT USING C(A% + B%):STRING$

PRINT USING Z40:STRING$

PRINT USING L40:BOOLEAN@

Statement 10 will left justify “CHARACTERS”in a 40-characterfield

beginning with column 1.

6-38

The next print expression would start in column 41:

column1 column 41

CHARACTERS

l J

|
40—CHARACTER FIELD

Print statements 20,30,40, and 50 would appearasfollows:

CHARACTERS

CHARACTERS

000000000000000000000000000000CHARACTERS
TRUE.

The L/R/C/Z formats are used mainly for string fields. These formats

can, however, be usedto print any data type.If these formats are

used to print a numeric field, the resulting numberwill be in the

same decimal format as described for the unformatted PRINT:

e BASIC will use the 8 digits of significance available and attempt

to locate the decimal point such that there is no need for an

exponent (123.45678 or .12345678 or 1234567.8).

e Ifthis is not possible, the numberwill be given one numeric

position to the left of a decimal point and an exponent will be

used (3.7836524E+ 12).

In either case, the numberwill be treated just like a “string” and will

be right orleft justified using the samerules as a string would be

when using the L/R/C/Z formats.

Only numeric expressions can use the decimal (D) format of PRINT

USING.This includesintegers or floating point numbers (decimal

numbers). The following are some examples using the D format:

5 BIG_LNUMBER=21.7654E+10

7 FIELD_WIDTH = 40

10 PRINT USING D(FIELD_WITH+5) .2:BIG_NUMBER

15 SPEED = 2.887654

20 PRINT USING D25.6:SPEED

25 REFERENCE% = 124

30 PRINT USING D10.1:REFERENCE%

column1 column 26 column 46

'
12345678901 2345678901 2345678901 2345678901 2345

124.0

Statement 30 2.887654

Statement 20 21765400
0000.00

Statement 10

Note that, when the integer REFERENCE% wasprinted with a

format of D10.1, the numbersafter the decimal were added and set

to zero even though REFERENCE%asan integer has nofractional

part. This will occurwith all integers when the numberof decimal

6-39

6-40

places to the right of the decimal point is specified as greater than

zero.

The following are all valid PRINT USING statements:

20 PRINT USING L24:“HI”,R34:“THERE”

20 PRINT USING L40:“HI” + “THERE”

20 PRINT USING D80.0:CURRENT_REFERENCE

20 PRINT USING &
D(LINEWIDTH%— 16).(DECPTS%):SPEED

20 PRINT USING L42:INTEGER%,SPEED

In the last example, an unformatted print field follows a formatted

one of L42:INTEGER%, whichis legal. Unformatted print

expressions may be mixed with formatted expressions in PRINT

USING. However, an unformatted PRINT statement may not contain

formatted print fields. If an unformatted print expression is used in a

PRINT USING statement, it will follow the samerules for “zoning” as

the PRINT statement.

Commasor semicolons may be used to separate fields in a PRINT

USING statement the same wayasin the PRINT statement.If

formatted fields are used back-to-back, they are not zoned but get

their format information from the format type they are printing

(L/R/C/Z/D/). If a non-formattedfield follows a formatted field and

they are separated by a comma,the non-formattedfield will follow

the samerules as the normal PRINT statement:it will zone the

unformatted value.

6.8.5 IOWRITE Statement (Accessing Foreign I/O)

See J-3649, J-3750 or J2-3045 for the requirements for using foreign
modulesin an AutoMax system. Onceit is determined thatall the

requirements have been met, you can use the IOWRITE statement

to write to the foreign modules. The IOWRITE statement can also be

used to write to AutoMax Modules that have not been configured.

The base addressof each slot in an AutoMax chassisis:

slot #0 -Address Range 200000- 20FFFF(Hex)

slot#1 -Address Range 210000- 21FFFF(Hex)

slot #2 -Address Range 220000- 22FFFF(Hex)

slot #3 -Address Range 230000- 23FFFF(Hex)

slot #4 -Address Range 240000- 24FFFF(Hex)

slot #5 -Address Range 250000- 25FFFF(Hex)

slot #6 -Address Range 260000- 26FFFF(Hex)

slot #7 -Address Range 270000- 27FFFF(Hex)

slot #8 -Address Range 280000- 28FFFF(Hex)

slot #9 -Address Range 290000- 29FFFF(Hex)

slot #10 -Address Range 2A0000- 2AFFFF(Hex)

slot #11 -Address Range 2B0000- 2BFFFF(Hex)

slot #12 -Address Range 2C0000- 2CFFFF(Hex)

slot #13 -Address Range 2D0000- 2DFFFF(Hex)

slot #14 -Address Range 2E0000- 2EFFFF(Hex)

slot #15 -Address Range 2F0000- 2FFFFF(Hex)

Eachslot in the rack has 64 K of address space.

Attempting to access memory on AutoMax Processorsis not

permitted. The following is the format of the IOWRITE statement:

IOWRITE(option, data, address)

where:

option = the kind of write to take place; literal or

expression:

1 = single byte write (low byte of data is written to the

address)

2 = double byte write (address must be even)(MSBis

written to the address) (LSBis written to the

address + 1) This option is used to write to

foreign I/O modules that only support an 8-bit
data path.

3 = word write (address) = A 16-bit word is written to

the designated address. This option writes data

to modules that support AutoMax addressing

and data conventions.

4 = long word write (address) = MSB

(address + 1) = next 8 bits

(address + 2) = next 8 bits

(address + 3) = LSB

data = integer variable name or expression defining

data to output;literal or expression

address = double integer variable name or expression

defining the destination address; literal or

expression; must be > 220000H

6-41

6.8.6

6.8.7

6-42

Notethat all task-to-task communication information is managed by

the system on the Common Memory module (M/N 570413).

GET Statement

The GET statementis used to input a single character from a device

(not a channel). The GET statement has the following format:

GET #logical_device_number, string_variable

where:

logical_device_number =
the logical number assigned to a device during

an OPENstatement. If no device number

given, the default device is PORTA on the

Processor module on whichthe task resides.

string_variable =
a variable of data type string only

The GET statement reads a single character from a device and

loads the characterinto a string variable. The character is NOT

echoedto the device asit is with an INPUT operation.

The optional parameter :EMPTY=ncan be usedto transfer control

of the program in the event that the channel is empty. The

parameteris added immediately after the device number; n is the

line numberto whichto transfer control.

The following are valid GET statements:

20 GET #2,A$
30 GET A$
40 GET #4:EMPTY=50, CHAR$

Refer to the OPEN statementdescription (6.8.1) for more information

on how the GET statement is used with the OPEN statement.

PUT Statement

The PUT statement is used to output a single character from a

device (not a channel). The PUT statement has the following format:

PUT #logical_device_number, string_variable

where:

logical_device_number =
the logical number assigned to a device during

an OPENstatement. If no device numberis

given, the default device is PORTA on the

Processor module on whichthe task resides.

string variable =

variable of data type string

The PUT statement outputs a single character from a string variable

to a device. The operation does not generate a <CR> <LF> asa

standard PRINT operation does.

The following are valid PUT statements:

20 PUT #2,A$
30 PUT A$

6.8.8

6.8.9

Refer to the OPEN statementdescription (6.8.1) for more information

on how the GET statement is used with the OPEN statement.

READ Statement

The READstatementdirects the system to read from list of values

built in a data block by a DATA statement. A READ statementis not

legal without at least one DATA statement.

A READstatement causesthe variableslisted in it to be given the

value of the next expression in the next DATA statement. BASIC has

a pointer to keep track of the data being read by the READ

statement. Each time the READ statement requests data, BASIC

retrieves the next expression indicated by the data pointer.

The READstatement hasthe following format:

READvariable_1,variable_2,...,variable_N

where:

variable_1 through variable_N = the value(s)listed in the DATA

statements

The variables can be simple (A%) or subscripted (A%(4)) and can be

anyofthe five variable types: integer, double integer, real, string,

and boolean. All variables should be separated by commas.String

variables should be enclosed within single or double quotes.

The following is a valid READ statement:

10 READ A%,B%,C$,D%(5)

DATA Statement

The DATA statement has the following format:

DATA expression_1, expression_2,... ,expression_n

where:

expression_1 to expression_n =
expressionthat, after evaluation, is loaded into

the corresponding variable in a READ

statement when the READis executed

The data type of the expression in the DATA statement must be the

sameas the data type ofthe variable that correspondsto it in the

READstatement.

The program will run faster with READ and DATAstatements as

opposed to the INPUT statement simply because the system does

not have to wait the extra time it takes for the system to stop and

request data. The data is already within the program.

The DATA statements may be formatted with any numberof

expressions as long as the same numberis being requested by the

READstatements:

10 READ A,B,C,D,E,F
20...

40 ...
800DATA 17
900 DATA 25,30,43,76,29

6-43

6.8.10

6-44

The numberof variables in the READ statement does not have to

match the numberof expressions in a specific DATA statement.

BASIC will simply go to the next sequential DATA statement in the

program to acquire the value. The variable type and expression

must match.

A READstatementis not legal without at least one DATA statement.

However, you can have more than one DATAstatementas long as

there is one READ statementin the program:

10 READ A,B,C,D,E,F
20...

40...
50 DATA 17,25,30
60 DATA 43,76,29

A READstatement can be placed anywherein a multi-statement

line. A DATA statement, however, must be the only statement on a

line.

If you build your READ statement with more variables than you

include in the data block, the system will print an error message

whenit attempts to access the next DATA expression and finds one

is not there.

The following is an example of a READ and DATA sequence:

10 READ A%,B,C1!,D2%,E4@,E6$,2Z$
20 DATA 2,32.9987,(83+19),—6, TRUE, “CAT”,DOG’
30 PRINT A%,B,C1!,D2%,E4@,E6$,Z$

In the example above, BASIC assigns these values:

A% = 2
B = 32.9987
C1! =102
D2% =—
E4@ = TRUE
E6$ = CAT
Z$ = DOG

READand DATAareusefulto initialize the values of variables and

arrays at the beginning of a program. To do this, place READ

statements at the beginning of the program. You can put the DATA

statements anywherein the program. It is often useful to put them all

at the end of the program just before the END statement. See also

the RESTOREstatement.

RESTOREStatement

The RESTOREstatementis used when reading from a DATA

statement more than once. When you READdata from a series of

DATA statements, BASIC advancesan internal pointer to the next

item in the datalist every time a READ is done. Once you have read

all the itemsin the datalist, this internal pointer points to the end of

the datalist. If you want to read starting with thefirst DATA

statement, the RESTOREstatementtells BASIC to resetits pointer to

the beginning of the DATA statements. The RESTOREstatement has

the format:

RESTORE

or

RESTOREline_number(expression)

6.9

6.9.1

The effect of the first format (with no line number) is to move the

DATAstatement pointer back to the first DATA statement in the

program. The effect of the second format (with the line number)is to

reset the DATA statementinternal pointer to the DATA statement at

the line numberspecified following the RESTORE.This line number

may be specified either by an integer constant or integer expression.

There must be a DATA statementat the line numberthat follows the

RESTOREorthe system will generate a STOP ALLerror. A

RESTOREcan beused at any time, not only whenall the DATA

statements have been read orat the end of the data.

Error Handling

During the execution of a BASIC task, error conditions can occur

that are not severe enoughto stop the task but are worth noting. All

errors that happen during execution are loggedin the task errorlog,

accessible through the on-line menu of the Programming Executive

software.If the erroris severe, it is displayed on the two 7-segment

LEDs onthe Processor module (M/N 57C430, 57C430A, 570431,
and 570435) and all tasks are stopped. See J-3684, J-3750 or
J2-3045 for more information.

BASIC provides two statements to help deal with errors that occur

during execution.

1. ON ERRORstatement

2. RESUME statement

ON ERRORStatement

The ON ERRORstatementis used to define where the task should

transfer control if a non-fatal error occurs. The ON ERRORstatement

has the following format:

ON ERROR GOTOline_number

where:

line_number = line_number where
error handling routine begins.

When BASIC executes the ON ERRORstatement,it stores the line

numberreferenced for later reference. When an error occurs, BASIC

transfers control of the program immediately to that line number.

The ON ERRORstatement may be executed as manytimes as

desired. BASIC re-loads the error handler line number eachtime.

To tell the user what kind of error occurred and whereit took place.

BASIC provides two pre-defined symbols:

e ERR% - The error numberof the logged error (decimal

error number)

e ERL% - The line number where the error occurred

These symbols are automatically defined when the task is created

and can be accessed the same as any othervariable. Refer to

Appendix B for a completelisting of run-time error codes.

6-45

6.9.2

6.9.3

6.10

6-46

RESUMEStatement

After BASIC hastransferred control to an error handling routine,

RESUMEtells BASIC that the error handling is complete. The

RESUMEstatementhasthe following format:

RESUME

The RESUME statementreturns processing to the statement that

was in progress whenthe error condition diverted it to the error

handling routine.

The following is a program with a valid RESUME statement:

10 ON ERROR GOTO850

850!-------- Runtime error handler-------

860!
870 IF ERR% = INT_VAR_LOVRFLOW% AND &

ERL% = 720 THEN GAIN = 0
880...
890...
895...
900 RESUME

CLR_ERRLOG
The statement CLR_ERRLOGis used to clearthe error log for the
application task, regardless of the numberof logged errors. See

7.35 for more information about testing the error log. The format of

the statementis:

CLR_ERRLOG.

INCLUDE Statement

The INCLUDEstatement allows the programmerto includea file

containing BASIC statements in the task asit is compiling.

Multi-statement lines and multi-line statements are permitted. The

file must not include line numbers. The compiler will add line

numbersin increments of 1, beginning with the INCLUDE statement

line number. The programmer mustallow enough line numbers

between the INCLUDEstatement and the statementthat followsit to

accommodatethe lines automatically generated. There are nolimits

on the numberof INCLUDEstatements in a task. However, no

INCLUDEstatements are permittedin a file that will be included in

the task. The format of the INCLUDE statementis:

INCLUDE “filename.INC”

where:

filename =

nameof thefile containing the statements to

be included. The extension .INC is required.

No drive or subdirectory specification is

permitted. Thefile to be included must be

located in the drive and subdirectory in which

the taskis located.

6.11

Whenyou save a reconstructible task from the processor, the

system will write the lines included backto a file with the same

filename as specified in the INCLUDE statement. The reconstructed

file will look exactly like the sourcefile. See J-3684, J-3750 or
J2-3045 for more information on reconstructible tasks.

The following is an example of a valid INCLUDE statement:

50 INCLUDE “IODEFS.INC”

The file IODEFS.INC contains the following:

IODEF RELAY_1@ [SLOT=3,REGISTER=1 ,BIT=4]
IODEF RELAY2@ [SLOT=3,REGISTER=1 ,BIT=5]
IODEF RELAY3@ [SLOT=3,REGISTER=1 ,BIT=6]

Whenthefile is compiled, it will look like this to the compiler:

50 INCLUDE “IODEFS.INC”
51 IODEF RELAY_1@ [SLOT=3,REGISTER=1,BIT=4]
52 IODEF RELAY_2@ [SLOT=3,REGISTER=1,BIT=5]
53 IODEF RELAY_3@ [SLOT=3,REGISTER=1,BIT=6]

Stopping Execution
(STOP and END Statements)

WARNING

CAREFULLY REVIEW MACHINE OPERATION TO INSURE THAT UNSAFE
MOVEMENTIS NOTINITIATED BY STOPPING ALL APPLICATION SOFTWARE.
FAILURE TO OBSERVE THIS PRECAUTION COULD RESULTIN BODILY INJURY
OR DAMAGETO EQUIPMENT.

The STOPstatementwill stop all tasks in the system and should

only be used when a severeerror has occurred. It will not be

possible to continue from a “stopped”state without re-startingall

tasks in the rack. The STOP statement hasthe following format:

STOP

The following are valid STOP statements:

20 IF OVER_TEMP@ THEN STOP
20 IF GAIN%>MAXGAIN% THEN PRINT &

ERROR_MESSAGE§$\STOP

The END statement is used to end the task execution or to place the

task in a suspendedstate until the time interval that was

programmedin a START EVERYstatement expires. If a task has a

periodic execution defined, it will at somelater point be re-activated

whenthat period or interval expires. Refer to section 6.7 for more

information.

The END statement has the format:

END

The END statement must be at the physical end of the task.

6-47

7.0 FUNCTIONS
AutoMax Enhanced BASIC incorporates numerousintrinsic

functions, i.e., functions that can be used within expressions. Some

are standard and some have been added to complementthe

AutoMax environment. The followingis a list of the current functions

available for use in an AutoMax system:

FunctionName

SIN
COs
TAN
ATN (ATAN)
LN
EXP
SQRT
ABS
CHR$
ASC%
LEN%
STR$
BINARY$
HEX$
LEFT$
RIGHT$
MID$
VAL%
VAL
FIX
CURPOS$
CLRSCR$
CLRLINE$
IOREAD%
BIT_SET@
BIT CLR@
BIT_MODIFY@
SHIFTL%
SHIFTR%
ROTATEL%
ROTATER%
BCD_OUT%

BCD_IN

BLOCK_MOVE@

GATEWAY_CMD_OK@

VARPTR%

TEST_ERRLOG@

READVAR%

WRITEVAR%

FINDVAR!

CONVERT%

Description
Sine

Cosine

Tangent

Arctangent

Natural logarithm (log base e)

Exponential (e**x)

Square root

Absolute value

Get character from ASCIl value

ASCII value of string character

Lenth ofstring

String from numeric expression (integer)

Binary form of input string (integer)

Hexadecimalvalue of input string (integer)

Substring from left side of string

Substring from right side of string

Substring from centerof string

Integer value of integer string expression

Real value of real string expression

Whole part only of real

Position cursor (VT100)

Clear the screen (VT100)

Clearline (VT100)

Read from foreign I/O board

Test if bit is set

Testif bit is clear

Modify bit value

Shift a numericfield left

Shift a numericfield right

Rotate a numeric field left

Rotate a numericfield right

Output the BCD numberfrom a
decimal number

Input the decimal numberfrom a
BCD number

Move a blockof integers from/to
registers

Gateway transfer function

Return pointerto variable

Test state of error log for task

Readsvariable, returns value

Writes value to variable

Returns pointer to variable

Converts data formats

7-1

7.1

7.2

7.3

7.4

7-2

SIN Function

Format:

SIN(expression)

where:

expression must be of numeric (integer or real) type. It

represents radians.

The function returns a real value equal to the sine of the input. The

result is in real format.

COS Function

format:

COS(expression)

where:

expression must be of numeric (integer or real) type. It

represents radians.

The function returns a real value equal to the cosine of the input.

The resultis in real format.

TAN Function

Format:

TAN(expression)

where:

expression must be of numeric (integer or real) type. It

represents radians.

The function returns a real value equal to the tangent of the input.

The result is in real format.

ATN (ATAN)Function
Format:

ATN(expression)

or

ATAN (expression)

where:

expression must be of numeric (integeror real) type.

The function returns a radian value equal to the arctangent of the

input. The units are in radians.

7.5

7.6

7.7

7.8

7.9

LN Function

Format:

LN (expression)

where:

expression must be of numeric (integer or real) type.

The function returns a real value equal to the natural log of the input.

The result is in real format.

EXP (e**x) Function

Format:

EXP(expression)

where:

expression must be of numeric (integer or real) type.

The function returns a real value equal to (e**expression) wheree is

2.71828. The result is in real format.

SQRTFunction

Format:

SQRT(expression)

where:

expression must be of numeric (integer or real) type.

The function returns a real value equal to the square root of the

input and the same data type as the input.

ABS Function

Format:

ABS(expression)

where:

expression must be of numeric (integer or real) type.

The function returns a real or integer value equal to the absolute

value of the input and the same data type as the input.

CHR$ Function

Format:

CHR§(expression)

where:

expression must be of integer type (hexadecimalis also

considered integer).

7-3

7.10

7.11

7.12

7-4

The function returns a string character, corresponding to the

decimal ASCII value of the input expression:

STRINGS$ = GHR$(41H) (STRINGSis loaded with ‘A’)
STRINGS$ = GHR$(30H) (STRINGSis loadedwith ‘0’)
STRINGS$ = CHR$(2AH) (STRINGSis loaded with ‘*’)

ASC% Function

Format:

ASC%(string)

where:

string can bea string variable or string expression.

The function returns the ASCII value of a single string character (the

opposite of the CHR§$function):

STRING$ = ‘5’

NUMBER% = ASC%(STRING$) (NUMBER% has the
value 35H)

LEN% Function

Format:

LEN%(string expression)

where:

expression mustbeofstring type.

The function returns the length of the string expression:

STR_LEN% = LEN%(‘STRING’) (STR_LEN% is loaded
with 6)

STR1$ = ‘AVCDFG’

STR_LEN% = LEN%(STR1$ + “23”) (STR LEN% is
loadedwith 8)

STR$ Function

Format:

STR$(expression)

where:

expression must be of numeric (integeror real) type.

The function returns a string of characters from a numeric

expression:

STRING$ = STR$(1224) (STRINGSis loaded with 1224)

NUM1% = 32

STRING$ = STR$(NUM1%*3) (STRINGSis loaded with 96)

STRING$ = STR$(388.73612) (STRINGSis loaded with
+.38873612E03)

7.13

7.14

7.15

In the last example, the format of the real numberreturned as a

string is the same numberbutin a different representation. All real

numberswill be returned by the STR$ functionin this format.

The string will always be 14 characters long with a sign

(+ or —), adecimalpoint (.), 8 digits (12345678), an exponent sign

(E), and 2 digits of exponent (XX). The sign character is always

presentafter this conversion evenif the numberis positive.

BINARY$ Function

Format:

BINARY$(expression)

where:

expression must be anintegeror integer expression.

The function returns the binary form of the input as a string of 1s and

Os. For example:

BIT$=BINARY$(NUMBER_1%)

HEX$ Function

Format:

HEX$(expression)

where:

expression must be anintegeror integer expression.

The function returns the hexadecimal value of the input as a string.

For example:

HEX_VAL$=HEX$(X%)

LEFT$ Function

Format:

LEFT$(string,str_length)

where:

string can be a string variable or expression.

str_length is the numberof characters to take from theleft side
of thestring (string expression) in parameter1.

The function returns a substring that is equalto ‘str_length’

(parameter2) of the leftmost characters of the string or string

expression (parameter1):

SUB_STRING$ = LEFT$(‘ABCDEFG’,4) (SUB_STRING$
has the value ABCD)

STR1$ = ‘12345’

SUB_STRING$ = LEFT$(STR1$ + ‘ABC’,6) (SUB_STRINGS
has the value 12345A)

7-5

7.16

7.17

7.18

7-6

RIGHTS$Function

Format:

RIGHT§(string,str_length)

where:

string can be a string variable or expression.

str_length is the numberof characters to take from the right side

of the string (expression) in parameter1.

The function returns a substring that is equal to

‘str-length (parameter 2) of the right-most characters of the string or

string expression (parameter 1):

SUB_STRING$ = RIGHT$((ABCDEFG’,4) (SUB_STRING
has the value DEFG)

STR1$ = '12345’

SUB_STRINGS$ = RIGHT$(STR1$ + ’ABC’,6)
(SUB_STRINGS has the value 345A4BC)

MID$ Function

Format:

MID§(string, start, end)

where:

string can bea string variable or expression.

start is the starting character position of the substring.

end is the ending character position of the substring.

The function returns a substring from within anotherstring. The

three parameters are, respectively, the string to operate on, the

starting character position, and the ending characterposition. The

substring is then taken from those twoinclusive positions:

SUB_STRING$ = MID$(ABCDEFG’,2,3) (SUB_STRINGS
has the value BC)

STRING$ = “BIGLONGSTRING”

SUB_STRING$ = MID$(STRING$,3,7) (SUB_STRING$ has
the value GLONG)

VAL% Function

Format:

VAL%(string)

where:

string can bea string variable or expression.

The function returns the integer value of a string in an integer format.

If the string is not in an integer format, the returned value will be zero

and anerror is logged:

STR_VAL% = VAL%(‘123’ + ‘74’) (STR_VAL% has the
value 12374)

7.19

7.20

7.21

VAL Function

Format:

VAL(string)

where:

string can bea string variable or expression.

The function returns the real value of a string in a real format.If the

string is not in a real format, the returned value will be zero and an

error is logged:

STR_VAL = VAL(‘9.8827’) (STR_VALhasthe value 9.8827)

FIX Function

Format:

FlX(expression)

where:

expression can be a real variable or real expression.

The function returns the whole part of a real or decimal number:

REAL_VAL = 87.88763

WHOLEPART = FIX(REAL_VAL) (WHOLE PART HAS THE VALUE
87.00)

CURPOSS$Function

Format:

CURPOSS$ (row, column)

where:

row and columnareinteger variables or expressions that

represent a cursor location on the screen of a VT100 compatible

terminal (1 to 24 rowsinclusive and 1 to 132 columnsinclusive).

CURPOS$returns an ASCII string or escape sequence. This

function is used in combination with a PRINT statement to position

the cursor at a specific location on the screen (specified by row and

column)for a device that recognizes the ANSI standard cursor

position escape sequence (ESC [row; col H):

ROW% = 10

COL% = 4

HEADING$ = “TABLE #1”

PRINT;CURPOS$(ROW%,COL%) ;HEADING$ (Prints
“TABLE #1”at cursor position 10,4)

Whenusing the CURPOS$ function with the PRINT statement, a

semicolon should always belocatedin front of the function call to

tell BASIC not to put the string (generated by the function call) ina

zonedfield (a field that is a multiple of 15 characters).

If the semicolon is not used, BASIC will pad the front of the escape

sequence with spaces, which will mostlikely not have the desired

effect: to move the cursorrather than to print something. Further

7-7

7-8

7.22

7.23

information about printing and zoned fields can be found in

PRINT/PRINT USING Statements in section 6.8.

CLRSCR$ Function

Format:

CLRSCR§$ (option)

where:

option is an integer variable or integer expression that defines

the clear screen option to perform.

CLRSCR$returns an ASCII string or escape sequence. This escape

sequencewill clear various parts of a screen on a terminal that

recognizes the ANSI standard erase-in-display escape sequence

(ESC [option J]). The option values are as follows:

0 = Erase from the active cursor position to the end of the

screen, inclusive.

1 = Erase from the start of the screen to the active cursor

position, inclusive.

2 = Eraseall of the display.

For example,

CLR_SCREEN% = 2
PRINT; CLRSCR$(CLR_SCREEN%); (Clears entire

display screen)

Whenusing the CLRSCR$ function with the PRINT statement, a

semicolon should always be located in front of the function call to

tell BASIC not to put the string (generated by the function call) ina

zonedfield (a field that is a multiple of 15 characters).

If the semicolon is not used, BASIC will pad the front of the escape

sequence with spaces, which will mostlikely not have the desired

effect: to move the cursorrather than to print something. Further

information about printing and zoned fields can be found in

PRINT/PRINT USING statements in section 6.8.

CLRLINE$ Function

Format:

CLRLINE$option)

where:

option is an integer variable or integer expression that defines

the clear line option to perform.

CLRLINE$ returns an ASCII string or escape sequence.

This escape sequencewill clear various parts of a display line ona

terminal that recognizes the ANSI standard erase-in-line escape

sequence. The optionsare asfollows:

ESC [0K Erase from the active cursor position to the end of theline,

inclusive.

ESC [1KErasefrom the start of the line to the active cursor position,

inclusive.

ESC [2K Eraseall of the line, inclusive.

CLR_TO_ENDLINE% = 0

PRINT;CLRLINE$(CLR_TO_ENDLINE%); (Clears from
cursorto endofdisplay line)

Whenusing the CLRLINE$ function with the PRINT statement, a

semicolon should always belocatedin front of the function call to

tell BASIC not to put the string (generated by the function call) ina

zonedfield (a field that is a multiple of 15 characters).

If the semicolon is not used, BASIC will pad the front of the escape

sequence with spaces, which will mostlikely not have the desired

effect: to move the cursorrather than to print something. Further

information about printing and zoned fields can be found in

PRINT/PRINT USING statements in section 6.8.

7.24 IOREAD% Function

The IOREAD%function is used to accessI/O from foreign modules

that are byte accessible only. The function returns an integer value.

Format:

IOREAD%(option,address)

where:

option is an integer variable or expression that defines the type

of read operation to perform:

option 1 = byte read

option 2 = double byte read (address must be even)

(address) = MSB

(address + 1) = LSB

This option is used to read from foreign I/O
modules that only support an 8-bit data path.

option 3 = word read

(address) = MSB

(address + 1) = LSB

The 16-bit word is read from the designated

address. This option reads data from modules

that support AutoMax addressing and data

conventions.

option 4 = long word read

(address) = MSB

(address + 1) = next bits

(address + 2) = next bits

(address + 3) = LSB

addressis a double integer variable or expression that contains the

address from wheredatais to be read; the address must be

>220000H. a
See J-3649, J-3750 or J2-3045 for more information on accessing
foreign I/O.

7-9

7.25

7.26

7.27

7-10

BIT_SET@ Function

Format:

BIT_SET@ variable, bit-number)

where:

variable is a single or double integer variable

bit-numberis the bit numberwithin the variable to test (O to 15

for single integer; 0 to 31 for double integer).

This function tests the value of a bit within the variable as specified

by the bit-number. If the bit is set to a value of one (1), the boolean

result of the function is TRUE.If the value of the bit is zero (0), the

result of the function is FALSE. This function does not change the

state of a bit; it simply testsit.

BIT_VALS% = 012A2H:! (BIT_VALS% = 0001 0010 1010
0010)

IF BIT_SET@(BIT_VALS%,1) THEN 250

In this example,the ‘IF’ statementwill take the branchto line 250

because the condition is TRUE. Thevalue of bit 1 of

BIT_VALS% is TRUEor 1.

BIT_CLR@ Function

Format:

BIT_CLR@ (variable, bit_number)

where:

variable is a single or double integervariable.

bit_numberis the bit numberwithin the variable to test (0 to 15
for single integer; 0 to 31 for double integer).

This function tests the value of a bit within the variable as specified

by the bit-number. If the bit is clear or a value of zero (0), the

boolean result of the function is TRUE.If the value of the bit is one

(1), the result of the function is FALSE. This function does not

changethestate of a bit; it simply testsit.

BIT_VALS% = 1128H:! (BIT_VALS% = 0001 0001 0010 1000)

IF BIT_CLR@(BIT_VALS%,2) THEN 250

In this example,the ‘IF’ statementwill take the branchto line 250

becausethe condition of the bit test was TRUE.(The bit was clear or

equal to zero.) The value of bit 2 of BIT_VALS% is FALSE; however,

the entire function is TRUE if the value of the bit is zero, so the

function is TRUE.

BIT_MODIFY@ Function

Format:

BIT_ MODIFY(variable, bit_number,option)

where:

variable is a single or double integervariable.

bit_numberis the bit numberwithin the variable to test.

(0 to 15 if single integer; 0 to 31 if double integervariable).

7.28

option defines the change to be madeto the bit and may be an

integer or boolean expression.

This function tests the variable as specified by the bit_number.

Based onthat value, the bit within the variable will be modified:

0 = Unconaitionally clear the bit (set to 0)

1 = Unconditionally set the bit to 1

2 = If the bit is already zero, set it to 1

3 = If the bit is 1, clear the bit (set to 0).

The function itself is a boolean function and not an integer function.

Therefore, the value thatit returns is not the updated value of the

variable modified but the status of the bit change operation. The

return status of the function is TRUE if the requested bit change

operation was completed or FALSEif the requested bit change

operation was not completed.

Two conditions will stop a request from being completed. Thefirst is

that the variable is in a forced condition and the bits cannot be

modified. The secondis that the requested changeis already the

currentstate ofthebit.

If the requestis to cleara bit if itis set and the current state of the bit

is already cleared, the function status will be FALSE because the

operation was not completed, i.e., there was no need to make the

change.Thistells the user the state of the bit prior to the bit modify

operation. Unless the variable is forced, options 0 and 1 will always

return a TRUE function status since they are unconditional

operations.

Boolean values can be used as the option numberfor the function.

This will result in an option 0 if the boolean is FALSEorin an option

1 if the boolean is TRUE. This can be used to changethe state of a

bit to match another boolean.

For example:

IF NO_FAULTS@ THEN SYSTEM_RUNNING@ = TRUE

BIT_VALS% = 0005H

IF BIT_MODIFY@(BIT_VALS%,2,SYSTEM_RUNNING@) THEN
300

In this example, bit 2 of BIT_VALS% will be given the same value as

the boolean SYSTEM_RUNNING@.

SHIFTL% Function

Format:

SHIFTL%(variable, shift_count)

where:

variable is a single or double integervariable.

shift_count is the numberof bit positions to shift the integer

expression (0 to 15 for single integer; 0 to 31 for double integer).

This function returns an integer value, equal to the integer

expression that was input, shifted the specific numberof binary

7.29

7.30

7-12

placesto theleft. (Bit 15, or bit 31 if double integer, comesoff the

end). The binary places vacated bytheshift are filled with zeros.

For example:

LSBITS_0_4% = SHIFTL%(INPUT_CARD%,12) AND OFOOOH

In this example, a 16-bit value is read from an input module. The

least significant group of 4 bits (bits 0 to 3) are shifted to theleft into

the mostsignificant position. The remaining lowerbits are masked

off by “anding” with hex value OFOO0.

SHIFTR% Function

Format:

SHIFTR%(variable,shift_count)

where:

variable is a single or double integervariable.

shift_count is the numberof bit positions to shift the integer

expression (0 to 15 for single integer; 0 to 31 for double integer).

This function returns an integer value equal to the integer expression

that was input, shifted the specific numberof binary places to the

right. Bit 0 comesoff the end. The result is not sign extended but

treated as a logical shift.

For example:

DECADE_2% = SHIFTR%(INPUT_CARD%,4) AND OFH

In this example, a 16-bit value is read from an input module. The

second group of 4 bits (bits 4 to 7) are shifted to the right into the

least significant position. The remaining upperbits are masked off

by “anding” with hex value OF.

ROTATEL% Function

Format:

ROTATEL%(variable, rotate_count)

where:

variable is a single or double integer variable or expression.

rotate_count is the numberof bit positions to rotate the integer
expression (0 to 15 for single integer; 0 to 31 for double integer).

This function returns an integer value, equal to the integer

expression that was input, rotated the specific numberof binary

placesto theleft (Bit 15, or bit 31 if double integer, wraps around to

bit 0).

For example:

MOVE_3_4% = ROTATEL%(INPUT_CARD%,4)

In this example, a 16-bit value is read from an input module and bits

(0 to 11) are rotated into the most significant bit positions (4 to 15).

Bits (12 to 15) are rotated into bit positions (0 to 3).

7.31

7.32

7.33

ROTATER% Function

Format:

ROTATER%(variable, rotate_count)

where:

variable is a single or double integer variable or expression.

rotate_count is the numberof bit positions to rotate the integer
expression (0 to 15 single integer; 0 to 31 for double integer).

This function returns an integer value, equal to the integer

expression that was input, rotated the specific numberof binary

places to the right (Bit 0 wraps aroundto bit 15, or bit 31 if double

integer).

For example:

SWAP_4_1% = ROTATER%(INPUT_CARD%,4)

In this example, a 16-bit value is read from an input module and bits

(4 to 15) are rotated into bit positions (0 to 11). Bits (0 to 3) are

rotated into bit positions (12 to 15).

BCD_OUT% Function

Format:

BCD_OUT%(variable)

where:

variable is a single or double integer variable or expression

(variable value < 9999 decimal).

This function returns an integer value, equal to the integer

expression that was input, with each decimal digit converted to a

hexadecimal 4-bit binary equivalent (opposite of the BCD IN%

function):

SWITCH_VALS% = 2156

OUTCARD_CARD% = BCD_OUT%(SWITCH_VALS%)

In the above example, the decimal value 2156 is converted to a

16-bit hexadecimal value equal to 2156H (hex).

If the value input to BCD_OUT% is greater than 9999 decimal, the

outputwill be hex 9999H and anerror will be logged. The sameis

true if the input numberis negative; the outputwill be OOOOH (hex)

and anerrorwill be logged.

BCD_IN% Function

Format:

BCD_IN%(variable)

where:

variable is a single or double integer variable or expression

(variable value < 9999 hex).

This function returns an integer value, equal to the integer

expression that was input, with each digit converted from a

7-13

7.34

hexadecimal 4-bit binary to the decimal equivalent (opposite of the

BCD_OUT%function). In the following example, assume the value at

INPUT_CARD% is 2381 hex:

IN_VALS%=BCD_IN%(INPUT_CARD%)

The hex value 2381 is converted to a 16-bit decimal value equal to

2381.

If the value input to BCD_IN% is greater than 9999 hex, the output

will be decimal 9999 and anerrorwill be logged.

BLOCK_MOVE@ Function

Format:

BLOCK_MOVE@(source,dest, size)

where:

source and dest must be integer, double integer, boolean, or

real variables or one-dimensional integerarrays. If integer,

double integer, or boolean variables, they must be variables

defined in the configuration task that points to the desired

specific source or destination register on the network. If the

sourceor destination is an array, it must be 1- dimensional. The

array may be commonorlocal.

size is the numberof registers (16-bit words) to transfer from the

sourceto the destination.

The BLOCK_MOVEfunction transfers data to and from the network.
It is a boolean function and is TRUE if the operation is successful,

FALSEif not. The function allows the user to specify only a starting

variable namefor the destination or source variable list and a length

of registers to be transferred. This eliminates having to define each

variable explicitly in the rack configuration and then transferring the

data onevariable at a time with a long list of LET statements.

The BLOCK_MOVEfunction checkstheindividual register values as
they are moved; if any of the values are FORCED,the forced value

will be used. Thus, the execution time for the function varies

considerably and is dependent on the numberof variablesin the

currentforcelist (maximum of 16) and whether any of those

variables are in the source or destination range of the

BLOCK_MOVEvariables.In the following example, 32 registers are

moved:

IF NOT BLOCK_MOVE@(NETW_1_32%, NETW_2_32%,32)
THEN STOP

Keep in mind the following when forcing variables and overlaying

variable definitions (an integer is overlayed over several booleans):

1. If boolean variables are forced within a forced integer, double

integer, or real variable, the integer forced value will prevail.

For example, If A@ and B@ are|/O defined as bits within XYZ%,

XYZ% and A@ and B@ areall forced, and XYZ% is used as the

source variable in a BLOCK MOVEfunction; the result will be

that the XYZ% forced value will take precedence over the A@

and B@ forced values.

7.35

2. If the destination is forced and the sourceis forced, the

destination forced value will prevail. The BLOCK MOVEfunction

will return a FALSE status if any of the following occurs:

The BLOCK_MOVEfunction will return a FALSE status if any on the
following occurs:

1. The numberof registers to transfer (transfer size) is:

e Less than or equal to zero

e Greater than 32767

2. The source or destination variable addressis less than the valid

starting offooard addressfor that rack configuration:

e lf there is no Common Memory module (M/N 57C413), the

starting address must be equalto or greater than

200000(hex)

e lf there isa Common Memory module (M/N 570413), the

starting address must be equalto or greater than

220000(hex)

3. The numberof registers to transfer is greater than the numberof

elements in the source or destination array. If the source or

destination is an array and the numberof elements is greater

than the numberof registers to move, only the number

requested will be moved and therest of the array will not be

affected.

GATEWAY_CMD_OK@ Function

GATEWAY_CMD_OKG@is a boolean function that performs register

transfers to or from the Interface modules, including the

Allen-Bradley (M/N 57C418), Modbus (M/N 570414), and AutoMate
(M/N 57C417) modules. This function cannot be used on the

AutoMax PC3000.If the operation is successful, the function returns

a 0 value.If the operation is not successful, the operation returns an

error code that is determined by the hardware with which the

Interface module is communicating.

Format:

GATEWAY_CMD_OK@(status, cmd_code, slave_drop, &
slave_reg, master_var, num_regs)

where:

status is an integer variable representing the location where the

resulting command status is stored; status will contain a zero if

the transfer operation is successful and an error codeifit is

unsuccessful. The error code is dependent on the module used.

See the instruction manualfor the specific Interface module for

the error codes.

cmd_codeis a variable name or expression of type integer

representing the commandsentto the Interface module; the

commandsavailable are specific to each interface module. See

the instruction manualfor the specific Interface module for the

available commands.

slave_dropis a variable name or expression of type integer

representing the device address (e.g., node number) of the

hardware the Interface module is communicating with

7-15

7.36

7-16

slave_reg is a variable name or expression of type string

representing the starting register in the device that is to be read

from or written to. The format of this parameter is dependent on

the module used. See the instruction manualfor the specific

Interface module for the correct format.

master_varis a variable nameor expression of type double

integer, representing the actual hexadecimal addressof thefirst

location that is to be read from or written to in the Interface

module. See below for more information.

num_regsis variable name or expression of type integer that

defines the numberof bits or registers (16 bits each) to be

transferred; cmd_code determines whetherthe variable
represents bits or registers. Note that if you are transferring

double integer (32-bit) variables, the num_regs parameter must

specify the numberof 16-bit variables to move. For example,if

you want to move two double integervariables starting at

address 270480H, num_regs must be equal to 4.

The master_var parameter can be specified using any one of the

three methods described below.

1. The absolute hexadecimal addressofthe first bit, integer, or

double integer on the Interface module to be read or written. For

example:

270480H

A variable name which represents the absolute hexadecimal

addressofthefirst bit, integer, or double integer on the Interface

module to be read orwritten. Typically, the VARPTR! function is

used to yield the absolute address. For example,if in your task

you define the following:

ADDRESS! = VARPTR! (FIRST_REG%)

then you can use ADDRESS! as the master_var parameter. This

assumesthat FIRST_REG% has been defined as a 16-bit integer

variable on the Interface module

An expression which, when solved, will yield an absolute

hexadecimal addressof thefirst bit, integer, or double integer to

be read or written. For example, the master_var parameter could

be:

VARPTR!(FIRST_BIT@)

where FIRST_BIT@ has been defined as a boolean on the

Interface module.

For more detailed information, see the instruction manual for each

specific Interface module.

VARPTRI!Function

Format:

VARPTRI (variable)
where:

variable is a commonboolean(single bit), integer (16 bits), or

double integer (32 bits) defined in the configuration as the

7.37

7.38

actual physical addressofthefirst location on the Interface

module from or to which data is to be read orwritten.

This function is usually used in conjunction with the

GATEWAY_CMD_ OK@function.It returns the actual address(in
hexadecimal format) of the bit, integer, or double integer which

representsthefirst location on the Interface module to whichor from

which data is to be transferred.

TEST_ERRLOG@ Function

The function TEST_ERRLOG@ teststhe state of the error log
maintained for the application task by the Programming Executive

software. This error log can be accessed through the On-Line menu

of the software. The function TEST_ERRLOG@ provides a method
of checking the error log while the application task is running. This

function is cleared with CLR_ERRLOG(see 6.9.3). Note thatfor
Version 3.3A and later of the Programming Executive software,this

function can be entered as TEST_ERRLOG@ or TST_ERRLOG@.

Format:

TEST_ERRLOG@variable)

where:

variable is an integer variable only; used to store the numberof

errors logged (1 to 3) for the task

If there are no errors logged, the result of the boolean functionis

FALSE and the numberparameteris indeterminant.If there are

errors, then the function is true and the variable specified is loaded

with the current number of logged errors (1 to 3). This variable must

be an integer variable.

READVAR% Function

This function requires the AutoMax operating system with the

Ethernet option.

Format:

READVAR%(vn§, value)

where:

vng$ is a string expression for the nameof the variable to

read. It can be a boolean, integer, double integer,

real, or an array of these types. Only single

dimension arrays are allowed.

value is the variable where the value readis written.

This function accepts a variable nameasa string expression and

returns the value in variable VALUE. Thestring that defines the

variable name must havea suffix as follows:

@ Booleans

% Integers

! Double integer

No suffix Reals

If specifying an array element, the subscript must be after the data

type characterif there is one. Only commonvariables can be

accessed.

7.39

7-18

Values Returned:

1 Success

—22 Variable not found

—23 Data type mismatch

For example:

VARIABLE_NAME$ = “SET_POINTS(17)”

STATUS% = READVAR%(VARIABLE_NAME$,VALUE)

WRITEVAR% Function

This function requires the AutoMax operating system with the

Ethernet option.

Format:

WRITEVAR%(vn§, value)

where:

vng$ is a string expression for the name of the variable to

write to. It can be a boolean, integer, double integer,

real, or an array of these types. Only single

dimension arrays are allowed.

value is the variable that has the valueto write.

This function accepts a variable name asa string expression and a

value to write into the variable. The string that defines the variable

name musthave a suffix as follows:

@ Booleans

% Integers

! Double integers

No suffix Reals

If specifying an array element, the subscript must be after the data

type characterif there is one.

If the data type of the variable, as defined in the string vn$, is

different than that of VALUE,an error is generated. Only common

variables can be accessed.

Values Returned:

1 Success

—22 Variable not found

— 23 Data type mismatch

—24 Variable forced

For example:

VARIABLE_NAME$ = “SET_POINTS(17)”

VALUE = 12.345

STATUS% = WRITEVAR%(VARIABLE_NAME$, VALUE)

7.40

7.41

FINDVAR! Function

This function requires the AutoMax operating system with the

Ethernet option.

Format:

FINDVAR!(varname$)

where:

varname$_ is a string expression for the nameof the

variable to find.

This function accepts a variable nameasa string expression and

returns a pointer to that variable. This may then be used in the

SENDL% and RECVL% functions.

@ Booleans

% Integers

! Double integers

$ Strings
No suffix Reals

If specifying an array element, the subscript must be after the data

type characterif there is one.

Values Returned:

>0 Pointer to Variable

—22 Variable not found

For example,to find a pointer to XYZ%(10):

VARIABLE_NAME$ = “XYZ%(10)”

POINTER! = FINDVARI(VARIABLE_NAMEG$)

CONVERT% Function

This function requires the AutoMax operating system with the

Ethernet option. This function can be used on the AutoMax PC3000

although the PG3000 doesnot support the other Ethernet functions.

Format:

CONVERT% (src_variable, src_subscript, dest_variable, &
dest_subscript, num_of_words, mode)

where:

src_variable is the variable that selects were to get data
from. This parameter may be a scalar or an

array of any data type. If src_variable is an

array, it should only be the base name and any

data type character.

src_subscript is only usedif the src_variable is an array. It

determines wherein the array to begin

reading. If not an array, the value should be 0.

dest_variable is the variable that selects were to move the
data. This parameter may be a scalar or an

array of any data type. If dest_variable is an

array, it should only be the base name and any

data type character.

7-19

7.42

7-20

dest_subscript is only used if destination_variable is an array.

It determines wherein the array to begin

writing. If not an array, the value should be 0.

num_of_words selects the numberof words to move.
mode determines the mode of operation.

VALUE FUNCTION

0 Move data with no changein

format
1 Convert from Motorola Floating

Point to IEEE format
2 Convert from IEEE Floating Point

to Motorola format
4 Word swap (0102H to 0201H)

8 Long word swap (01020304H to

04030201H)
9 Motorola to IEEE followed by long

word swap

10 Long word swap followed by IEEE

to Motorola

All other valuesareillegal

This function is used to convert between data formats used by

AutoMax and data formats used by other computers.

Values Returned:

1 Success

—26 Arrayis not single dimension

—32 Beyond end of array
—33 Illegal mode value

—34 Zero number of words

—35 Odd numberof words on long word swap
—36 Number of words > dest data type when dest memoryis

on CPU

For example, to move 30 real numbers beginning at

SRC_ARRAY(10) to DST_ARRAY(20) converting from Motorola to

IEEE and inverting the byte order:

STATUS% = CONVERT%(SRG_ARRAY, 10, DST_ARRAY, 20,
15, 9)

RTS_CONTROL@ Function

Format:

RTS_CONTROL@(#n,control_val%)

where:

#nis the logical number assigned to the port in the OPEN

statement.

control_val% (input constant of variable integer) is non-zero to

turn the RTS signal on and 0 to turn the RTS signal off.

This function provides control of the RTS modem control signal. If

hardware handshaking is enabled and RTSis set true using this

function, RTS will remain true after all characters have been

transmitted so that the application task cansetit false after a delay.

Refer to the OPEN statementfor a description of the purposeof the

RTS signal.

7.43

7.44

This function returns false only underthe following conditions:

e #nis not assigned to an opened port

e #nis not assigned to a serial communication port (PORTA on the

leftmost Processor; PORTA or PORTB onother Processors)

The following example would turn RTS on, wait 55ms, send thetext,

wait for all characters to be sent, wait 110ms, then turn RTS off.

10 OPEN ”PORTA’AS FILE #1, SETUP=0,9600
30 CONTROL_VAL% = 1 /turn RTS on

40 STATUS@ = RTS_CONTROL@(#1, CONTROL_VAL%)

50 DELAY 10 TICKS /delay 55 ms

60 PRINT #1, SEND$ /send text out port A

65 IF (ALL_SENT(#1)) THEN GOTO 70

66 DELAY 1 TICK: GOTO 65 /wait forall sent

70 DELAY 20 TICKS /delay 110 ms

80 CONTROL_VAL% = 0 /turn RTS off

90 STATUS@= RTS_CONTROL@(#1, CONTROL_VAL%)

ALL_SENT@ Function

Format:

ALL_SENT@(#n)

where:

#nis the logical number assigned to the port in the OPEN

statement.

This function provides a method to detect whenall characters in a

message are sent.

This function returnstrueif all of the characters from the previous

print statement have been transmitted (that is, the transmit queueis

empty).

This function returns false only underthe following conditions:

e@ Somecharacters have not yet been transferred.

e #nis not assigned to an opened port

e #nis not assigned to a serial communication port (PORTA on the

leftmost Processor; PORTA or PORTB onother Processors)

Refer to the OPEN statementfor a description of the purposeof the

RTS signal.

WRITE_TUNEFunction

Format:

WRITE_TUNE(tunable, new_value, in_limit@)

where:

tunable is the tunable variable. It can be an integer, double

integer, orreal.

new_value is the new valueforthe tunable variable. It can be a
variable, an expression, ora literal value. The compiler will

report an errorif tunable’ and ’new_value’ are not the same
data type.

7-21

7-22

in_limit@ is true if ’new_value’ is less than or equal to the
tunable variable’s high limit and greater or equal to the tunable

variable’s low limit. This parameteris optional.

This function provides the ability to change the current value of

tunable variables. This function will respect the tunable variable’s

high and low limits. The compiler will disallow use of any other

statement, function, or control block to write to tunable variables.

The “modified” flag for the task (in the on-line tasklist) will be set

whenthe task executes this function. On the UDC module, the new

current value will be written to non-volatile flash memory. The new

value will not be written to flash memoryif it is the sameasthe old

value.

On the UDC module,if the tunable variable is a Power Module

Interface (PMI) gain, then all the PMI gains will be multiplexed with

the setpoint data to the PMI when the tunable value is changed. The

gains will not be sentif the new value of the tunable variable is the

sameas the current value.

Note that frequent tunable updatesvia this function may slow

the responsetime of the Programming Executive and will count

towards the maximumlimit on write operations to the UDC. See
the UDC moduleinstruction manual, S-3007, for more

information.

8.0

8.1

ETHERNET
COMMUNICATION
FUNCTIONS
The following functions are used only with the Ethernet Network

Interface (ENI) module (M/N 570440). Before any of the following
functions can be used, the AutoMax operating system with the Ethernet

option must be loaded onto the Processor. Note that tasks that use

these functions must be run on the leftmost Processorin the rack.

These functions cannot be used on the AutoMax PC3000.

Function Name

ENLINIT%

SOCKET%

BIND%

CONNECT%

ACCEPT%

SEND%

SENDL%

RECV%

RECVL%

SETSOCKOPT%

GETSOCKOPT%

SHUTDOWN%

ENI_INIT%

Format:

Description
Initializes ENI

Creates socket

Binds socket

Assigns destination for socket

TCP only; directs a passive open

Sends specified type of variable

Sends double integer array

Writes received variable

Writes received array

Sets socket option

Reads socketoption

Closes socket

Function

ENI_INIT%(slot%, adadr$, tcp%, udp%, ether%)

where:

slot%

adar$

tcp%

udp%

ether%

is the logical slot the ENI is to be in. This can be

a variable or a constant. The only legal values

are 2 or 4.

is the Internet address to assign to the ENI. This

is a string of four decimal numbers separated

by decimal points, each ranging from 0 to 255.

A typical addressis 128.0.0.10.

defines the numberof sockets to use for the

TCP protocol.

defines the numberof sockets to use for the

UDP protocol.

defines the numberof sockets to use for Raw

Ethernet.

The ENI_INIT% function commandsthe Ethernet NetworkInterface
to go throughits initialization. The ENI supports three types of

protocols: TCP UDP, and Raw Ethernet. Up to 64 channels (sockets)

can be assigned to each ENI. Part of theinitialization selects how

may sockets to allow for each protocol. The green LED onthe front

8-1

8-2

8.2

8.3

of the ENI will turn off for approximately 10 seconds while the

initialization is performed.

Values Returned:

1 Success

-1 ENI failed self test

—8 Buserror

—10_ Error allocating interrupts

—11 Bad slot number

—12 Bad Internet address

-—13 Total numberof sockets >64

For example:

STATUS% = ENI_INIT%(4, “128.0.0.10”, 32, 10, 3)

SOCKET% Function

Format:

SOCKET%(slot%, type%)

where:

slot% is the logical slot the ENI is to be in. This can be

a variable or a constant. The only legal values

are 2 or 4.

type% is used to select the protocolfor this socket.

Legal values for type are:

1 for a TCP socket

2 for a UDP socket

3 for a Raw Ethernet socket

This function will find an available socket of the requested type. If

successful, the value returned is the numberof the socket allocated.

All subsequent function calls to communicate with the ENI usethis

socket numberto select the socket to talk through.

Values Returned:

>0 ~The socket numberallocated

-2 ENI notinitialized

-3 Did not create socket

-—9 Nobuffer space
—11 Bad slot number

—14 Bad socket type

For example:

SOCKET_NUM% = SOCKET%(4,1)

BIND% Function

Format:

BIND%(sn%, port%)

where:

sn% is the numberof the socket you wantto bind. This

is the value that was returned from the SOCKET%

8.4

function. This can be specified as a simple

variable or as an elementof an array.

port% is the local port number you want to give to the

socket. Begin assigning TCP and UDPport

numbers at 5000.

For raw Ethernet sockets, this value is used to

select the value of the 16-bit packet type in the

message header.

This function assigns a local port numberor Ethernet packet type to

a socket.

Values Returned:

1 Success

-2 ENI notinitialized

-4 Did not bind socket

-—9 Nobuffer space
—15 Bad socket number

For example:

STATUS% = BIND%(SN%, 5000)

CONNECT% Function

Format:

CONNECT%(sn%, addr$, port%)

where:

sn% is the number of the socket you want to connect to

a destination. This is the value returned from the

SOCKET% function. This can be specified as a

simple variable or as an elementof an array.

addr$ is the destination Internet or Ethernet address you

want to connect to. See ENI_INIT for applicable

rules for Internet addresses. Ethernet addresses

are 12-digit Hex numberstrings.

port% is the destination port number you want to connect

to.

This function assigns a permanent destination for a socket. It must

be done before any messages can be sent using any of the three

protocols. For Raw Ethernet or UDP sockets, this function is used

only to specify the destination address. For TCP sockets,it directs

the ENI to do an active open. A passive open (ACCEPT%), done by
the destination TCP socket, must occurprior to this function being

executed to establish a connection. After the connection is made,

messages can be exchanged.

If connecting a TCP socket and the other end is not ready to accept

the connection, the socketwill be closed. To try to connect again,

the application must create a new socket and bind it again.

For raw Ethernet sockets, the port numberdefines the packet type

of all messagesthat will be sent. The receiving end must do a

BIND% with the same value for the port number.

8-3

8-4

8.5

Values Returned:

1 Success

-2 ENI notinitialized

-—9 Nobuffer space
-—12 Bad InterNet address

—15 Bad socket number

—102 Socket not connected

For example:

STATUS% = CONNECT%(SN%, DEST_INET_ADDR§, 5001)

ACCEPT% Function

Format:

ACCEPT%(sn%, nsn%)

where:

sn% is the numberof the TCP socket that should begin

waiting for a connection to be made. This can be

specified as a simple variable or as an element of

an array.

nsn% is filled in by this function with a new socket

numbercreated when a connection has been

established. This must be a simple variable; array

elements are not allowed.

This function is used to direct the ENI to do a passive open.This is

valid only on TCP sockets. This function suspends execution of the

task and waits until a connection is established. When a connection

arrives, it creates a new socketwith the attributes of the given

socket to service the connection. The application program may then

shut downthe original socket sn%, or it may loop backto the

ACCEPT% to wait for another connection to comein. In this way a

given service may have more than oneclient at a time.

Communication will take place through the new socket.

Values Returned:

1 Success

-2 ENI notinitialized

-7 Did not accept

-—9 Nobuffer space
—15 Bad socket type

-—16 Nota TCP socket

For example:

STATUS% = ACCEPT%(SN%, NSN%)

8.6 SEND% Function

Format:

SEND%(sn%,var, len%)

where:

sn%

var

len%

is the numberof the socket through which the

messageis to be sent. This is the value that was

returned from the SOCKET% or ACCEPT%
function. This can be specified as a simple variable

or as an elementof an array.

is the variable that has the data to send. It can be a

boolean, integer, double integer, real, string, or an
array of these types. It may be local or common.If

an array is specified, no subscript may begiven.It

will always start with the zeroth elementof the

array.

is the number of bytes to send beginning at var.

This parameter can be a constant, an integer, or a

double integer.

If var is an array, and len% is zero, the length to

sendis the size of the array. An error is generatedif

len% is greater than the size of the array.

This function causes a message to be sent to the destination as

defined by the socket number.

Ifa TCP socket is specified, it must be connected. If the connection

wasestablished with an ACCEPT%,the destination is the station

that established the connection.

Values Returned:

>0O Numberof bytes transferred
-2 ENI notinitialized

-9 Nobuffer space
—15 Bad socket number

-17 Message too long, UDP > 1472, ETH > 1500

-—18 Zero length for non-array

—26 Array is not single dimension

—32 Beyond end of array

—102 Socket not connected

For example:

XMIT_LEN% = SEND%(SN%, SET_POINTS%, MSG_LEN%)

where SET_POINTS% is the nameofan array.

8-5

8-6

8.7 SENDL% Function

Format:

SENDL%(sn%,list!)

where:

sn% is the numberof the socket through which the

messageis to be sent. This is the value that was

returned from the SOCKET% or ACCEPT%
function. This can be specified as a simple variable

or as an elementof an array.

list! is a single dimension double integer array whose

sizeis limited only by memory capacity. The values

in this array define where to get the data to send.

No subscript is given on this parameter.

Beginningatlist!(0), the even elements of the array

contain pointers to the data to send and odd

elements of the array contain the numberof bytes

to transfer. The numberof bytes must be even. The

value for pointers is found with the VARPTR!or

FINDVAR! function. Thelist is terminated by a

pointer with a value of zero at the even boundary.

This function causes a message to be sent to the destination as

defined by the socket number.

Ifa TCP socketis specified, it must be connected. If the connection

wasestablished with an ACCEPT%,the destination is the station

that established the connection.

Values

>0

Returned:

Numberof bytes transferred

-2 ENI notinitialized

-—9 Nobuffer space
—15 Bad socket number

—17 Message too long
-—18 Zero length

—19 Illegal Pointer

—25 Nota double integerarray

—26 Nota single dimension array

—27 Bad array format

—30 Odd numberof bytesin list parameter

—102 Socket not connected

For example:

XMIT_LEN% = SENDL%(SN%, NETWORK_LIST!)

8.8 RECV% Function

Format:

REGCV%(sn%,var, len%)

where:

sn% is the numberof the socket through which the

messageis to be received. This is the value that

wasreturned from the SOCKET% or ACCEPT%
function. This can be specified as a simple variable

or as an elementof an array.

var is the variable where the data receivedis written. It

can be a boolean, integer, double integer, real,

string, or an array of those types.If an arrayis

specified, no subscript may be given.

len% is the numberof bytes to receive. This parameter

can be a constant, an integer, or a double integer.

If var is a simple variable and len% is greater than

the size of the simple variable, then var must be

defined as I/O to avoid overwriting AutoMax

memory.

If var is an array, and len% is zero, the length to

receive is the size of the array. An erroris

generated if len% is greater than the size of the

array.

For TCPonly,if len% is —1, the numberof bytes

received will be returned to the sender.

This function writes up to len% bytes of data from socket SN% into

the variiable VAR.

Ifa TCP socketis specified, it must be connected.

A socket can beselected as blocking or non-blocking. If the socket

is blocking and no data has comein,the task will be suspended

until data arrives. If the socket is non-blocking and no data has

comein, the RECV% commandwill return with the error No

message waiting. The default mode is blocking.

Values Returned:

>0 Length of message received

-2 ENI notinitialized

-—9 Nobuffer space
—15 Bad socket number

—17 Message too long
-—18 Zero length for non-array

—26 Array is not single dimension

—29 Max size of strings are not equal

-—31 Max size of string < recv size of string

—32 Beyond end of array

—101 No message waiting

—102 Socket not connected

For example:

RECV_LEN% = RECV%(SN%, SET_POINTS%, LEN%)

8-7

8.9 RECVL% Function

Format:

RECVL%(sn%, list!)

where:

sn% is the numberof the socket through which the

messageis to be received. This is the value that

wasreturned from the SOCKET% or ACCEPT%
function. This can be specified as a simple variable

or as an elementof an array.

list! is a single dimension double integer array whose

sizeis limited only by memory capacity. The values

in this array define where to put the data to

received. No subscript is given on this parameter.

Beginningatlist!(0), the even elements of the array

contain pointers to where to put the data and odd

elements of the array contain the numberof bytes

to accept. The numberof bytes must be even. The

value for pointers is found with the VARPTR!or

FINDVAR! function. Thelist is terminated by a

pointer with a value of zero at the even boundary.

This function receives data from socket SN% into memory pointed

to bythelist. All pointers must reference variables defined as |/O.

Pointers may not reference variables defined in the Common

Memory Module or AutoMax Processor.

If a TCP socket is specified, it must be connectedfirst.

A socket can be selected as blocking or non-blocking. If the socket

is blocking and no data has comein,the task will be suspended

until data arrives. If the socket is non-blocking and no data has

comein, the RECVL% commandwill return with the error No

message waiting. The default mode is blocking.

Values Returned:

>0O Numberof bytes transferred
-2 ENI notinitialized

-—9 Nobuffer space
—15 Bad socket number

—17 Message too long
-—18 Zero length

—19 Illegal pointer

—25 Nota double integerarray

—26 Nota single dimension array

—27 Bad array format

—30 Odd numberof bytesin list parameter

—101 No message waiting

—102 Socket not connected

For example:

RECV_LEN% = RECVL%(SN%, NETWORK_LIST!)

8.10 SETSOCKOPT% Function

Format:

SETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the number of socket whose option you want to

set.

opnum% is the numberof the option to set.

opval% is the value to write into the ENI.

This function is used to select different modes of operation.

OPNUM% selects which option to change, and OPVAL% selects the

mode of operation.

Options OPNUM% OPVAL% Description

Keep Alive 0008h 0 Keepalive is disabled
(Default)

1 Keepalive is enabled

This option is only used on TCP sockets. When enabled, the ENI will

periodically send an empty message to maintain the connection. If

this option is not used and a frameis not received within 8 minutes

the ENI will assumeit has been broken.

Linger 0080h 0 Linger is disabled (Default)
1 Linger is enabled

This option is only used on TCP sockets to select how the

SHUTDOWNfunction will operate. Whenlinger is enabled and there

are messagesin any transmit or receive queues the ENI will process

those messages before doing the shutdown.

Non Blocking 0200h 0 Non Blocking is disabled

(Default)

1 Non Blocking is enabled

This option is used to select how the RECV% and RECVL% function

will operate. If Non blocking is enabled and no message hasarrived

for the RECV% or RECVL%, control is returned to the application

program and an error code -101 is returned by the RECV% or

RECVL%.

Values Returned:

1 Success

-2 ENI notinitialized

—5 Did not set option

-9 Nobuffer space
—15 Bad socket number

—20 Bad option number

—21 Bad option value

For example, to set the socket to nonblocking:

STATUS% = SETSOCKOPT%(SN%, 0200h,1)

8-9

8.11

8-10

GETSOCKOPT% Function

Format:

GETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the number of socket whose option you want to

read.

opnum% is the numberof the option to read.

opval% is the name of the option variable where the current

value is written.

This function is used to examine what modesof operation are

selected. OPNUM% selects which option to look at, and OPVAL%

displays the current status.

Options OPNUM% OPVAL% Description

Keep Alive 0008h 0 Keepalive is disabled
(Default)

1 Keepalive is enabled

This option is only used on TCP sockets. When enabled, the ENI will

periodically send an empty message to maintain the connection. If

this option is not used and a frameis not received within 8 minutes,

the ENI will assumeit has been broken.

Linger 0080h 0 Lingeris disabled

(Default)

1 Linger is enabled

This option is only used on TCP sockets to select how the SHUT-

DOWNfunction will operate. When linger is enabled and there are

messagesin any transmit or receive queues the ENI will process

those messagesbefore doing the shutdown.

Non Blocking 0200h 0 Non Blocking is disabled

(Default)

1 Non Blocking is enabled

This option is used to select how the RECV% and RECVL% function

will operate. If Non Blocking is enabled and no messagehasarrived

for the RECV% or RECVL%, control is returned to the application

program and anerror code-101 is returned by the RECV% or

RECVL%.

Connected 0800h 0 Socket not connected

1 Socket connected

This option is only used on TCP sockets.It allows the application

program to test if a connection is established without doing a

SEND% or RECV%.

Values Returned:

1 Success

-2 ENI notinitialized

-—6 did not get option

-—9 Nobuffer space
—15 Bad socket number

—20 Bad option number

—100 No buffer space

8.12

For example,to test if the socket is connected:

STATUS% = GETSOCKOPT%(SN%, 0800h, OPTION_VALUE%)

SHUTDOWN®%Function

Format:

SHUTDOWN%(sn%)

where:

sn% is the numberof the socket for which the
connection should be terminated.

This function closes the socketto allow it to be reused at a later

time.

TCP sockets need to be shut downat only one end. Either the active

or passive side may close the connection. The otherside will

automatically shut down. UDP and Raw Ethernet sockets need to be

shut down at both ends.

Values Returned:

1 Success

-2 ENI notinitialized

—15 Bad socket number

—28 Socket closed by destination

For example:

STATUS% = SHUTDOWN%(SOCKET_NUM%)

8-11

Appendix A

Converting a DCS 5000 BASIC Taskto
AutoMax

You can easily convert any DCS 5000 Version 4 task to AutoMax. Simply

re-compile the task using the AutoMax Executive Programming software. Refer

to J-3684, the ReSource AutoMax Programming Software instruction manual, for

more information on compiling a BASIC task.

Converting a Version 1.0 BASIC Taskto Version 2.0

You can easily convert any AutoMax Version 1.0 BASIC task created with M/N

57C304-57C307 Executive softwareto run in a 2.0 (M/N 57C390-57C393)
system. Simply re-compile the task using AutoMax Executive Programming

software V 2.0 (M/N 57C390-57C393). Refer to J-3684 for more information on
compiling a BASIC task.

Converting a Version 2.0 BASIC Task to Version 3.0

You can easily convert any AutoMax Version 2.0 BASIC task created with M/N

57C390-57C393 Executive software to run in an AutoMax V3 system. Simply
copy the task into AutoMax V3 using the AutoMax Executive Programming

software V 3.0 (M/N 57C390-57C393), and then re-compile the task. Refer to
J-3750 for more information on copying and compiling a BASIC task.

A-1

Appendix B

BASIC Compiler and Run Time Error
Codes

The following error codes are displayed on the screen whentasks are compiled.

Control Block Error Codes (BASIC Compiler)
257 Bad control block statement format

258 Unrecognized namefor control block

259 Missing END statementin control block task

260 Notassigned

261 Variable used in control block not defined

262 Badliteral value for KI, KP or KD

263 Bad WLD * KP/C value (See AutoMax Control Block LanguageInstruction
Manual; J-3676.)

264 Badliteral value for DEAD_BAND, MAX_CHANGE,or LOOP_TIME

265 Invalid data type for literal in control block

266 Incomplete input pairs or input/output pairs in a control block

267 Bad SCALE, REQUIRED_SAMPLES,or MAX_COLUMNSValue

268 Bad specification for array in control block

269 Control block not the only statementfor that line number

270 CML specifiedliteral field out of range

271 SCAN_LOOPblock not allowed with CML block

272 Integer literal field too large

273 Invalid parameter keyword in control block

274 Calculated K value out of range

275 Literal symbol too long

276 Required control block field missing

277 Required control blockliteral missing

278 Control block field mustbeliteral

279 Control block field must be variable

280 Non-contiguousinputs, input pairs, or input/output pairs in control block

281 Missing SCAN_LOOPblockin control block task

282 Signed booleanliteral or numeric variable not allowed

283 WLDvalue out of range

284 Invalid value for Lead Lag W

285 Invalid value for WM

286 Invalid value for WLD

287 Word size out of range

288 Array specified has too many subscripts

289 Integer literal > 24 bits; can’t be accurately converted to real

290 Invalid value for Max_Input

291 More than 1 SCAN_LOOPcall in a control block task

292 Fastfloating point overflow

293 ‘Fastfloating point underflow

294 ‘Fastfloating point divided by zero

295 Meaningless tangent argument

296 Minimum numberof inputs or outputs not programmed

B-1

B-2

297

298

299

300

301

302

303

304

305

Invalid data type for variable in Control Block

Parameter keyword previously defined in Control Block

Data structure symbol nametoo long

Data Structure requires more than maximum storage

Numberof inputs/outputs greater than data structure definition

Duplicate definition or incorrect data structure type

Invalid Control Block Modespecified

Bad NOTCH bock Q_FACTORvalue

Bad NOTCHblock WN value

IODEF, RIODEF, NETDEF, RNETDEF, MODDEFError Codes
306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Bad IODEFstatement format

IODEF address must not be odd

Bad IODEF variable type

IODEF hex addresstoo large

Invalid bit number specification in RIO/NET DEF

Invalid literal in RIO/NET DEF

Missing masterslot specification in RIODEF

Badliteral in IODEF

Missing bit field specification

Missing slot specification

Bad RIO/NET DEFstatement format

Missing drop specification

Bad MODDEFstatement format

Bad GATEWAYregister specification

Bad RNETDEFstatement format

Bad RNETDEFregister specification

Invalid variable data type in GATEWAYdefinition

Bad ABDEFstatement format

Badfile specification in ABDEF statement

Bad BOOLEANliteral specification

Bad GBLDEFstatement format

Invalid network specification

Type of NET_NAMEdoes not match type of variable

Networkfile not found

No networkfile drive

Invalid networkfile drive

Error opening OBNfile

Error reading from OBNfile

Networkvariable name not found on OBN file

No memory to build network functions

Function Call Error Codes
336

337

338

339

340

341

342

Invalid function call format

Incorrect numberof parameters in function call

Bad parameterdata type in function call or bad array subscript

Parameter symbol not defined

Variable must be simple (not array variable)

Invalid function parameter

Invalid function expression

343

344

345

346

347

Bad function variable

Bad array; must be 1 dimension (integer)

Bad BLOCK_MOVEvariable

Variable in function call not defined as COMMON

Ticks per scan too high

Insufficient Memory Error Codes
356

357

358

359

360

361

362

363

364

365

366

Insufficient memory to compile array

Insufficient memory to compile FOR statement

Insufficient memory to build symbol table

Insufficient symbol table memory

Object code buffer overflow

Opcodeposition overflow; statement too long

No more user stack

No more program stack

No more type stack; expression too long

No more operator stack; expression too long

No more memoryto link object code buffer

FOR-NEXT Error Codes
376

377

378

379

380

381

382

383

384

385

386

387

FOR control variable cannot be a tunable variable

NEXTcontrol variable does not match FOR control variable

Control variable must be simple variable (not array).

Invalid data type on control variable in FOR statement

Bad FORstatement format

Invalid statement type following THENin IF statement

Missing expected THEN

Invalid data type for expression in FOR statement

Missing corresponding FOR statement

FOR loopsnested too deep

IF-THEN-ELSE statement >32K

Missing <CR> or old and new IF-THEN formats mixed

OPEN, CLOSE,INPUT, PRINT Error Codes
396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Bad device name

Badlogical file number specification

Bad device name for OPEN statement

Bad baud rate in OPEN SETUP parameter

Invalid device specification

Bad OPENstatementformat

Duplicate logicalfile number

Invalid CLOSE statement format

Invalid device name

Missing expected printfield

Specified file has not been defined (no OPEN)

Device must be accessed by OPEN first

Invalid data type for print using format

Bad PRINT USING format

Specified format field width too wide

Cannot haveprint using with channel

B-3

B-4

412
413
414
415
416
A17
418
419
420
421
422
423

Bad GETstatement format

Bad PUT statement format

Bad INPUT statement format

Cannot close a channel

Cannot GET from a channel

Cannot PUT to a channel

Bad SETUP specification in OPEN device

Open device attempted on a channel

Bad format in OPEN FOR READ or OPEN FOR WRITE

Invalid keyword in OPEN configuraton

Bad ACCESS parameter (must be EXCLUSIVE or NON_EXCLUSIVE)

SETUP requires EXCLUSIVE access

START, WAIT, DELAY, EVENT Error Codes
426

427

428

429

430

431

432

433

434

435

436

Invalid time units specification

Missing DELAY expression

Bad START EVERYstatement

Bad WAIT statement format

Invalid event name

Bad EVENTstatement format

Bad time units in START statement

Delay time units must be an integer

Duplicate event name

Missing start interval

Missing event definition

ChannelI/O Error Codes
446
447
448
449
450
451
452
453
454
455

Missing DEPTH parameter on OPEN CHANNEL FOR INPUT

Bad OPEN CHANNELformat

Bad channel template in OPEN statement

Invalid DEPTH specification for OPEN CHANNEL

INPUT/PRINT reference does not match channel template

Not assigned

Channel template too large

Channel packet too large

Channel was openedfor input but output attempted

Channel was opened for output but input attempted

Array Error Codes
466

467

468

470

471

Array requires more than maximum storage

Bad array subscript

Numberof subscripts does not match definition

Missing array dimension

Too manyarray subscripts

Miscellaneous Compiler Error Codes
484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

New value must be sametype as tunable in WRITE_TUNE

Tunable variable expected

Missing delimiter

Missing equal sign “=”

Missing left parenthesis “(”

Missing right parenthesis “)”

Missing expected comma“,” or semicolon “;”

Missing line number

Invalid line number

Line numberout of range (must be 1 to 32767)

Invalid data type mixing in expression

Invalid variable type

Variable name same as reserved symbol

Variable name too long

Missing variable name

Variable name too long

Invalid subscripted variable

Invalid variable specified in READ statement

Missing variable definition

Invalid statement terminator; expecting EOS

Task must be a CONFIGURATIONtask

Missing operand (symbolorliteral)

Missing arithmetic/relational operator

Not valid statementforthis task type

Invalid integer expression for ON GOTO

Invalid ON GOTO statement format

Missing expected TO

Expected expression not found

Missing expected line number

Invalid boolean expression

Invalid tunable statement definition

Symbolalready defined; duplicate definition

Invalid data type for a tunable variable

Tunable variable ranges are inconsistent

Undefined variable or statement not permitted in this type of task

Invalid tunable variable definition format

Tunable cannotbearray,left side of equal, or control block output

Missing expected variable

DATAstatement notfirst statementforthis line number

Not assigned

Overflow in ASCII to binary integer conversion

Numericliteral too large

Realliteral too large

Null buffer overflow; statement too large

Object buffer overflow; statement too large

Expression evaluator; stack integrity lost;expression too long

Compilerintegrity lost

Illegal symbol in REM statement

CALL statementnotfirst statement for this line number

B-5

B-6

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Task not of type BASIC, CONTROL, or CONFIGURATION

Invalid task statement format

Invalid task priority

Invalid task name

Invalid slot specification

Missing string variable in GET or PUT statement

Illegal on board I/O address specified

Bad IOWRITEformat

Bad IOWRITEoption expression

Bad IOWRITEvalue expression

Bad IOWRITEaddress expression

REM statementnotfirst statement on theline

Bad ON ERRORstatement format

Fatal expression evaluation error; no opcode match

String literal too large

Too manytotal elements for an array

Array variable was referenced as a simple variable

Illegal state in expression evaluation; integrity lost

Bad expression in SET_MAGNITUDEstatement

Bad SET_MAGNITUDEstatement format

Bad variable type in SET_MAGNITUDEstatement

Invalid TIMEOUT expression in EVENT statement

Symbol > 255 characters long; statement too long

Bad IF statementtransfer line number

Invalid characters after the ampersand continuator

Remark statement too long

Line numberout of range

Mustbefirst statement on the line

Symbolis not a variable name

Loss of precision in converting real number

ELSE or END_IF encountered while not compiling an IF statement

ELSE not needed (condition already satisfied with ELSE or END_IF)

Missing THEN in IF—THEN ELSEstatement

IF—THEN SECTIONnested to deep

ELSE notvalid in old style IF—THEN format statement

Path prefix not supported or bad formatfor includefile name

Nested includefiles not supported

Undefined compilerdirective

String length specified > 256 characters

String length specified not of type integer

Cant update INCLUDEstructure info — object code corrupted

Include file could not be opened

Invalid file extension - must be .INC

Missing rate specification

Invalid rate specification

Redefinition oftick rate for this slot

Invalid tickdef statement format

No executable statements encountered! No object code can be

generated

Control Block Related Error Codes
590

591

592

593

594

595

596

Invalid value for WLG

Invalid value for ORDER

Control Blocks encountered before SCAN_LOOP

Invalid value for RES_N

Invalid value for RES_D

Invalid value for ZETA_N

Invalid value for ZETA_D

Resolution Error Codes
656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

Line used in RESTOREis not a DATA statement

FOR and NEXTvariables do not match

Insufficient memory to compress object code

Object codelarger than 32K

Stack requirements too large

Data structures too large

Symboltable integrity lost

Insufficient memory for post-compile resolution

Line numbernot resolved

Symboloffset too big; task too large

No TASKstatement in configuration task

No symbols in configuration task

Duplicate data pointers with same data type; caused by assigning two

DIFFERENTvariables of the SAMEtype to the SAME registerorbit:

IODEF YES@[slot=3, REGISTER=1,BIT=1]

IODEF NO@[slot=3, REGISTER=1 ,BIT=1]

or

NETDEFFIRST%[slot=2, DROP=1,REGISTER=2]

NETDEF SECOND%[slot=2,DROP=1 ,REGISTER=2]

Symboltable too large; too many symbols

Invalid condition; integerliteral in BASIC task symboltable

Unable to allocate enough space for symbol table

Symboltable integrity lost

Too many COMMONintegers, double integers, booleans used

Unable to allocate space for the BASIC runtime structure header

Too many LOCALintegers, double integers, booleans used

Too many LOCALintegers, double integers, booleanliterals used

Too many COMMONreals, strings, arrays used

Too many LOCALreals, strings, arrays used

Too many OPEN CHANNELstatements

Too manyarrays used

Too many FORloops used

Too manyrealliterals used

Too manyreal tunable variables defined

Invalid condition; literal in CONFIGURATION task

Invalid condition; string literal type in the symboltable

Offset to realliteral in CONTROLtask greater than 16 bits

Invalid condition; LOCALvariable in CONFIGURATIONtask

Invalid condition; relative symbol number not resolvable

Offset required for relocatable reference greater than 16 bits

B-7

B-8

690

691

692

693

694

695

696

697

698

699

700

701

702

725

Error opening the object outputfile

Error writing to object outputfile

Task with READ statements but no DATA statements

Too many LOCALintegers, double integers, boolean variables used

Unable to allocate enough space for object code

Undefined Control Block data structure found

Error closing sourcefile (disk may befull)

Error closing logfile (disk may befull)

Error closing includefile

Error attempting to load time/date into object file

Object size >32767 in Control Block task

Symbol & data size > 32767 in Control Block task

Object+ Symbol-+ Data size >20480 in UDC control block task

Invalid numberof array dimensions

Run Time Error Codes

The following error codes are displayed in the error log accessible from the

ON-LINE menu whenthetaskis running.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

Arithmetic integer overflow code

Arithmetic real overflow code

String concatenate overflow

Divide by zero

Integer multiply overflow

Integer assign overflow

Single integer conversion overflow in real to single integer

Double integer conversion overflow in real to double integer

Real to double integer conversion yields number > 24 bits

String overflow

Precision lost in real to integer array element conversion

Precision lost in real to double integer array element conversion

Precision lost in real to single integer conversion

Array subscript out of bounds

Requested substring > string

DATAtype in READ statement does not match DATA statememt

No more DATAstatements

Bad line number for RESTOREstatement

Overflow in conversion of real to integer of FOR loop control variable

Overflow in conversion of real to integer of FOR statement TO value

Overflow in conversion of real to integer of FOR statement STEP value

Integer > 24 bits in STEP value integer to real conversion

Bad IOWRITE

Integer control variable overflow in FOR statement

Double integer control variable overflow in FOR statement

Real control variable overflow in FOR statement

Negative delay

Delay value too large (0 to 32767)

Negative start interval

Delay value too large (0 to 32767)

Not assigned

Hardware event # ticks < 0

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

Hardware event ticks overflow

Print buffer overflow;print field too long

Device not open properly

OPENwith bad device address

Device not openfor write

No stack spaceforprint

Device not allocated

No buffer for print operation; insufficient memory

Fatal print error

Device already open

Device OPENed differently from attempted operation

Bad allocate

Bad default OPEN

Device already closed

Device opened as a channel

Bad device close; no address

Default device not allocated

Channel not open

Print integer channel overflow

Message overflow

Unsuccessful channel open

Integer > 24 bits in real conversion

Realto integer overflow

No buffer for GET operation

No print buffer

Device closed on GET

GET not open for read; GET attempted on unopened device

Bad GET operation

No buffer for PUT operation

No print buffer

Device closed on PUTstatement

PUT not openfor write; PUT attempted on unopened device

Unsuccessful PUT operation

Device should be open

Invalid baud rate

Bad SETUP re-configuration

Precision out of range

Width too long printing integerfield in PRINT USING D format

Width too long printing integerfield in PRINT USING with L/R/C/Z format

Negative decimal places

Numberdecimal points greater than maximum precision allowed

Width less than zero

Field width overflow

Requested substring width less than zero

Requested width greater than maximum

No space for requested PRINT USING field

String greater than field width

Bad channel depth

Device not open

Attempted negative square root

B-9

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

First substring position specification greater than string length

Not assigned

Not assigned

Wrongdata type input for boolean

Another error occurred during execution of ON ERRORroutine

Could not allocate for write

Wrongdata type inputfor string

Last substring position less thanfirst substring position

First substring position specification < 0

Last substring position specification < 0

Rotate count greater than 31

Overflow on absolute value function

Not assigned

Device open at END

Channel not open on input

Wrongtypefor integer

Next characterafter field not legal

Bad next character

No input channel |/O buffer

Not allocated for re-configuration

Bad BCD digit

Channel already open

Wrong token for comma

Not openfor read

No commabetweenfields

Wrongdata type inputforreal

No buffer space can beallocated for I/O

Not assigned

Invalid re-configuration

Missing line number

Bad device on input

Wrong typefor double integer

No device address

Numbergreater than 24 bits

Not openforwrite

No device address

Attempt to execute a null opcode

Unbalanced GOSUB-RETURN

NEXT does not match loop variable in FOR statement

NEXT does not match FOR

Bad START statement format

Bad hardware event call

Undefined opcode

Stack overflow

No channel buffer space

STOP executed

Opcodenot assigned

No event addressdefined

GOSUBsnot balanced

Bad VALfunction conversion

888 BCD output numbergreater than 9999

889 Bad bit numberin function call

890 Bad option numberin function call

891 Invalid GATEWAYtransfer call

Note: Checkreturned status variable of

GATEWAY_CMD_OK@function; decode status error numbers as follows
(01 through 07 are MODBUSexception codes):

Decimal

01 Illegal function code

02 lllegal starting register

03 lllegal data

04 PC aborted

05 Not assigned

06 PC busy

07 Not assigned

08 lllegal data in response message

09 Responsetimeouterror

20 Dual port addresserror

21 Gateway card not found or not accessible

22 No available Gateway channel

23 lllegal register number

24 Illegal numberof register

25 Illegal command number

26 Illegal command number/register set

27 Illegal register number/numberof registers

28 lllegal device address

892 BLOCK_MOVEinvalid source parameter

893 BLOCK_MOVEinvalid destination parameter

894 BLOCK_MOVEinvalid transfer size parameter

895 RESUME without executing ON ERRORstatementfirst

956 UDCtick rates do not match

958 PMI gains out of range

959 UDC Processorerror

960 Floating point format conversion error

961 Spurious interrupt detected from Multibus

962 CCLK must be enabled to execute task

963 OS background not completing

964 Flash update not completing in time; check utilization

Corrective action: For error code 757, check real and double integer value

ranges.

Error Codes Caused By UDC Modules
1000 SCR fault

1001 M-contactorfault

1002 (not used)

1003 Instantaneous overcurrentfault

1004 Synch loss (ACline voltage)

1005 Conduction timeout

1006 Field loss fault

1007 Tach loss fault

1008 Broken wire in resolver

1009 (not used)

1010 Overspeedtrip

1011 Power Technology module fault

1012 PMI powersupply fault

1013 PMI busfault

1014 UDC run fault

1015 Fiber optic link com. fault

Corrective action: Theseerrors reflect the status of the drive fault register

(A=202, B=1202) on the UDC module. See $-3006 for more information.

Serial I/O Error Codes
The possible causesofserial I/O errors include:

A hardware problem with device connected to serial ports on the face of the

Processor module.

1064 ElA control (carrier detect) lost

1065 Parity error (when enabled)

1066 Overrun error

1067 Framing error

Distributed Power System Error Codes
2060 Bad wN in NOTCHblock

2061 Bad Q value in NOTCHblock

2062 ResNor resD out of range

2063 ZetaN or zetaD out of range

2064 LIM_BARis out of range

2065 TRIP_TIMEis out of range

2066 THRESHOLDis out of range

Appendix C

HardwareInterrupt Line Allocation
Current Minor Loop (CML) tasks or tasks that use BASIC hardware EVENT

statements require Processorsto allocate hardwareinterrupt lines on the rack

backplane. This is because someportion of task execution depends upon

receiving a user-defined hardwareinterrupt from another module in the rack,

e.g., a Resolver Input module. This appendix will describe the basic method by

whichinterruptlines are allocated. See the Control Block Languageinstruction

manual (J-3676) for more information on CML tasks.

Because the numberofinterruptlines is limited to four, it is necessary to take

into account the rules by which they are allocated in order to prevent errors

whenapplication tasks are put into run. Each of the four interrupt lines can

“service” one of the following:

a) four BASIC language hardware EVENTstatements in BASIC or Control

Block tasks

b) one CML task (used in racks containing drive cards only)

Any one Processor module can allocate oneof the fourinterrupt lines for up to

four EVENT statements and oneline for a CML task. (CML tasksarelimited to

two per rack because of drive module configuration restrictions.) A minimum of

one hardwareinterruptline is allocated for a Processor Module regardless of

whether one or four hardware EVENTstatements are used in the application

tasks loaded on that Processor.

The following examplesof interrupt line allocation assumethat there are two

Processor modulesin the rack. Note that these examples do nottake into

accountthe efficiency of distributing application tasks between Processor

modulesin this manner(in terms of system performance).

Example #1

Slot 1 Slot 2
Processor Processor
Module Module

—|— x" x x-x

4 hardware EVENT No hardware
statements in EVENTstatements
BASIC or Control or CML tasks.
Blocktasks.

Interrupt Line
Hardware EVENT Statement
CML Task

“

o
t
t

ll

CML

C-1

Example #2

Slot 1 Slot 2
Processor Processor
Module Module

—E CML
—_ — Xr XXX

1 CML task 4 hardware EVENT

 Interrupt Line

“

e
o
s

statements

Hardware EVENT Statement

CML CMLTask

Example #3

Slot 1 Slot 2
Processor Processor
Module Module

ee X'

—_— — CML
—— — x-xX-xX-X

1 hardware EVENT 1 CML task and
statement 4 hardware EVENT

statements

= Interrupt Line
x = Hardware EVENT Statement
CML = CMLTask

Example #4

Slot 1 Slot 2
Processor Processor
Module Module

—|— CML
—|— CML
—_— — X- xX- x-X

2 CMLtasks 4 hardware EVENT
statements

= Interrupt Line
x = Hardware EVENT Statement
CML = CML Task

C-2

Appendix D

BASIC Language Statements and
Functions Supported in UDC

Control Block Tasks
The following BASIC statements are supported in UDC Control Block tasks:

CLR_ERRLOG
COMMON
END
FOR-NEXT
GOSUB
GOTO
IF-THEN-ELSE
INCLUDE
LET
LOCAL
ON ERROR
REM OR !
RESUME
RETURN
SET_MAGNITUDE

The following BASIC functions are supported in UDC Control Block tasks:

ABS
ATAN
BCD_IN%
BCD_OUT%
COs
EXP
LN
ROTATEL%
ROTATER%
SHIFTL%
SHIFTR%
SIN
SQRT
TAN
TST_ERRLOG@
WRITE_TUNE

The following expressions are supported in UDC Control Block tasks:

+ Addition, Unary+

- Subtraction, Unary—

* Multiplication
/ Division

** Exponentiation
AND Logical “AND”
OR Logical “OR”
XOR Logical “exclusive-OR”

NOT Unary boolean operator performs a boolean complement
= Equal to
< Less than

> Greater than
<= Less than or equal to
>= Greater than or equal to

<> Not equal to
>< Not equal to

D-1

Appendix E

AutoMax Processor Compatibility
with Versions of the

AutoMax Programming Executive
Thelist that follows shows which AutoMax Processor modules can be used with

the AutoMax Programming Executive software.

AutoMax Programming

Executive Software

Version 1.0

M/N 570304, 57C305
M/N 57C306, 57C307 (updates)

Version 2.0

M/N 57C390, 570391
M/N 57C392, 57C393 (updates)

Version 2.1D and later

M/N 570391

M/N 57C393 (update)

Version 3.0

M/N 57C395
M/N 57C397(update)

Version 3.1

M/N 57C395

M/N 57C397(update)

Version 3.3* and later

M/N 57C395

M/N 57C397(update)

Compatible
Processor Module

M/N 570430
M/N 570430

M/N 57C430A
M/N 57C430A

M/N 57C430A
M/N 570431
M/N 570435

M/N 57C430A
M/N 570431
M/N 570435

M/N 57C430A
M/N 57C430A

M/N 57C430A
M/N 570431
M/N 570435
M/N 57C430A
M/N 570431
M/N 570435

M/N 57C430A
M/N 570431
M/N 570435
M/N 57C430A
M/N 570431
M/N 570435

*Notethat if you are using the Programming Executive for drive control

applications, the Universal Drive controller (UDC) module (B/M 57552)is
supported only in Version 3.3 and later of the Programming Executive software.

E-1

Appendix F

New Features
The following are either new or changed in BASIC for Version 3.0 of the

AutoMax Programming Executive.

1. ENLINIT%

SOCKET%

BIND%

CONNECT%

ACCEPT%

SEND%

SENDL%

RECV%

9. RECVL%

10 SETSOCKOPT%

11. GETSOCKOPT%

12. SHUTDOWN%

13. READVAR%

14. WRITEVAR%

15. FINDVAR!

16. CONVERT%

The following are either new or changed in BASIC for Version 3.3 of the

AutoMax Programming Executive.

O
N
A
A
P
E
W
H

Section 2.3 - describes the use of BASIC statements and functions in UDC

Control Block tasks.

Appendix D - lists the BASIC functions and statements supported in UDC

Control Block tasks.

Appendix E - lists the AutoMax Processors that are compatible with

versions of the AutoMax Programming Executive software.

The following are either new or changed in BASIC for Version 3.4 of the

AutoMax Programming Executive.

Section 4.1.1 has been revised to state that “E” notation should be used to

indicate an exponentin BASIC.

Section 8.0, describing the Ethernet functions, now states that tasks that use the

Ethernet functions must be run on theleft-most Processorin the rack.

The following functions have been added to BASIC:

RTS_CONTROL@
ALL_SENT@
WRITE_TUNE

Additional BASIC statements and functions that can now be used in UDCtasks:

FOR-NEXT
SET_MAGNITUDE
SIN, COS, TAN, ATAN
EXP
LN
BCD_IN%, BCD_OUT%
WRITE_TUNE

F-1

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www. reliance.com/automax

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200,Fax: (1) 414.212.5201

for All ¥ Products, Products and Global Manufacturing Solutions
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA,Tel: (1) 414.382.2000,Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong,Tel: {852} 2887 4788,Fax: (852) 2508 1846

Heaxiquarters for Dodge and Reliance Electric Products
Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800,Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, Brilhistra&e 22, D-74834Elztal-Dallau, Germany, Tel: (49} 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-011/02 Revenue House, Singapore 307987,Tel: (65) 6356-9077, Fax (65) 6356-9011

Publication J-3675-6 - April 1998 Copyright © 2002 Rockwell Automation, Inc. All rights reserved. Printed in U.S.A.

