
Ethernet Network

Interface Module

M/N 57C440A

Instruction Manual J-3696-2

PEN
ELECTRIC&L/

The information in this user’s manual is subject to change withoutnotice.

ONLY QUALIFIED ELECTRICAL PERSONNEL FAMILIAR WITH THE
CONSTRUCTION AND OPERATION OFTHIS EQUIPMENT AND THE HAZARDS
INVOLVED SHOULD INSTALL, ADJUST, OPERATE AND/OR SERVICE THIS
EQUIPMENT. READ AND UNDERSTAND THIS MANUAL AND OTHER
APPLICABLE MANUALSIN ITS ENTIRETY BEFORE PROCEEDING.FAILURE TO
OBSERVE THIS PRECAUTION COULD RESULT IN BODILY INJURY.

CAUTION:This module contains static-sensitive components. Careless handling can

cause severe damage.Do not touch the connectors on the back of the module. When

not in use, the module should bestoredin an anti-static bag. Failure to observe these

precautions could result in damageto or destruction of the equipment.

Motorola™ 68010 is a trademark of Motorola,Inc.
IBM PC™ is a trademark of International Business Machines,Inc.

VAX™ and DECnet™ are trademarks of Digital Equipment Corporation.

Xerox™ and Ethernet™ are trademarks of Xerox Corporation.

UNIX™ is a trademark of AT&T Bell Laboratories.
ReSource™ is a trademark of Reliance Electric Companyorits subsidiaries.

Reliance® and AutoMax®are registered trademarksof Reliance Electric Companyorits
subsidiaries.

Portions of this work are derived from a copyrighted work of RockwellInternational, CMC
subsidiary.

1.0

2.0

3.0

4.0

Table of Contents

Introduction 2.2.0.0... cceeeeee 1-1

1.1 Overview ccceeeett 1-1

1.1.1 Application Task Interface 0.00. e eee ee eee 1-2

1.1.2 Communication Protocols:.0e eee eee 1-3

1.1.2.1 TCP Protocol 0... cece eee eee 1-3

1.1.2.2 UDP Protocol........... 0... eee eee ee 1-3

1.1.2.3 Raw Ethernet Protocol005 1-4

1.1.3 IEEE 802.3/Ethernet Protocol--2eee- eee 1-4

1.1.4 IEEE 802.3/Ethernet Physical Layer.................0. 1-4

1.2 Additional Information 0.0.0. e cece eee eee 1-4

1.3 Related Hardware and Software 0.00: eee eee eee 1-5

Mechanical/Electrical Descriptionc0eeceeeeee 2-1

2.1 Mechanical Description 0.0...eee 2-1

2.2 Electrical Description00. 2-3

2.3 Transceiver Interface 00.eects 2-4

Installation 2.0.2... cececece 3-1

3.1 Hardware Configuration 0. ceceeee 3-1

3.2 Rack Configurationccceeeeee 3-1

3.3 ENI Installation 2.0.0.0... 0... cece eeeeee 3-2

3.4 Module Replacement............. 000s eeeeee eee 3-3

Programming cc ccce eee eee eeeee eens ene eaeees 4-1

4.1 Introduction 0...ceceeee 4-1

4.2 Programming Overview 0... cece eee eee 4-2

4.2.1 Card Initialization 0. eee eee ee 4-2

4.2.2 Creation and Binding of Sockets00. 4-2

4.3.3 Establishing a Connection-e ee eee eee 4-3

4.2.4 Data Transfer 0... ceceeee 4-3

4.2.4.1 Sending Data00. 4-3

4.2.4.2 Receiving Dataeee 4-4

4.2.5 Support Functions eee e eee eee eee 4-4

4.2.6 Closing Sockets 0... cece cece eee 4-4

4.2.7 Sample Programs cece cece eee 4-5

4.2.7.1 TCP Sample Program0:ee eee ee 4-5

4.2.7.2 UDP Sample Program00++ eee ee 4-8

4.2.7.3 Raw Ethernet Sample Program 4-10

4.3 Raw Ethernet Notes 0... c eee e eee eee eee 4-13

4.3.1 Ethernet Frame Format 0. cece eee eee 4-13

4.4 Data Formats 0... c cececece 4-14

4.4.1 Booleans 10... 0.0...ceceeee 4-14

4.4.2 INt@QEMS0.eens 4-14

4.4.3 Double Integers 0...cece 4-14

4.4.4 RealS2...eeeeee eens 4-14

44.5 StringS ceceetnies 4-14

4.5 Use of HardwareInterrupts in Racks Containing Ethernet
or Network Modules 000 cee eee e eee e eee eens 4-14

4.5.1 Examples ofInterrupt Line Allocation 4-15

4.5.2 Examplesof Interrupt Allocation with Ethernet

or Network Modules in the Rack-...2.+- 4-17

4.6 Functions 0... c ec cee eee eee e eee eens 4-19

4.6.1 ENIINIT% Function 0... cece eee eee 4-20

4.6.2 SOCKET% Function 0.00 cece eee eens 4-21

4.6.3 BIND% Function 0.000 cece eee eee eens 4-22

4.6.4 CONNECT% Function00c cece cece eens 4-23

4.6.5 ACCEPT% Function 0.00: cece eee eee anes 4-24

4.6.6 SEND% Function 0.00 c cece eee eens 4-25

4.6.7 SENDL% Function 000 cece eee eee eens 4-26

4.6.8 RECV% Function 00. ccc cece eee ee eens 4-28

4.6.9 RECVL% Function 00. ccc cece eee eee anes 4-29

4.6.10 SETSOCKOPT% Function 000 ce cece eees 4-31

4.6.11 GETSOCKOPT% Function000cc eee eee 4-32

4.6.12 SHUTDOWN% Function 0.0.00 c cece eee 4-33

4.6.13 READVAR% Function000c cece cece eens 4-34

4.6.14WRITEVAR% Function000 cence eee eee 4-35

4.6.15 FINDVAR! Function000c cece eee eee aes 4-36

4.6.16 CONVERT% Function0.0c cece cece eens 4-37

5.0 Diagnostics and Troubleshooting200eeeeeeeeee 5-1

Appendices

Appendix A

Technical Specifications 0cccee A-1

Appendix B

Connecting the ENI to the Transceiver-.-2e seen B-1

Appendix C
Error Code Summaty 00 cece eee cece eee eee eee C-1

Appendix D

Glossary ... 00...eeenett D-1

List of Figures
Figure 1.1 - ENI Model 0. cece eee eee eens 1-2

Figure 2.1 - Module Faceplate 00.0: cece eee eee eee eee 2-2

Figure 2.2 - Block Diagram 0... cececeeeens 2-3
Figure 2.3 - Transceiver Connections 0000 e eee eee eee 2-4

Figure 3.1 - Setting Jumperfor Logical Slot Location 3-2

Figure B-1 - Transceiver Cable Pin Connections0005 B-1

1.0

1.1

INTRODUCTION
The products described in this manual are manufactured or

distributed by Reliance Electric Industrial Company.

This manual describes the Reliance AutoMax TCP/IP Ethernet
networking package.It gives AutoMax™ processors access to TCP/IP
Ethernet™ local area networks. The packageconsists of the AutoMax
Ethernet NetworkInterface (ENI) module and software. Cabling is
provided by the user.

The ENI moduleis a high performance communication processor
which provides the physical interface and communicationintelligence

necessary to connect AutoMax processors to TCP/IP Ethernetlocal
area networks (LANs). The physical interface complies with Ethernet
2.0 and IEEE 802.3 standards. Communication is implemented with

the TCP/IP network protocol, whichis an internationally-recognized

industry standard for computer networking.

The ENI softwareis incorporated in the AutoMax Programming

Executive (Version 2.1 andlater). It provides the application task

interface to the ENI module. The interface is implemented as a set of

functions in AutoMax BASIC that are modeled after the UNIX
SOCKETSlibrary.

The ENI module can be usedonly in racks on which the AutoMax

operating system with the Ethernet option has been loaded. See the
AutoMax Programming Executive instruction manual (J-3684) for
information on loading the AutoMax operating system with the
Ethernet option.

This manual describes the ENI module, ENI software, ENI module

installation, diagnostics, and troubleshooting instructions. A glossary
of termsis provided in Appendix D.

Overview

The AutoMax TCP/IP Ethernetinterface provides a reliable and
powerful network interface supporting communication between

application tasks residing in remote AutoMax processors and/or host

computers. A modelofthe interface is shownin figure 1.1. The
components of the model are described below.

1-1

AutoMax

orAutoMax
Host Computer

Application Task Application Task

Application Task Application Task

Interface Interface

tcp | UDP tcp | UDP
Protocols Protocols

| fo ,

IEEE 802.3/Ethernet IEEE 802.3/Ethernet
Protocol and Protocol and
Physical Layer Physical Layer

Vy y

Medium Attachment Medium Attachment

Unit (transceiver, Unit (transceiver,
modem) modem)

4 4

cable

1-2

1.1.1

Figure 1.1 - ENI Model

The networkinterface is modeled as a set of communication protocol

layers located one abovethe other.

Application TaskInterface

The Application Task Interface (ATI) is a set of function calls in
AutoMax BASIC that support the remote task-to-task communication

function. The ATI provides a choice of three types of communication
services to implementthis function. These services are called TCP,
UDP and raw Ethernet. Up to 64 sockets can be created on each
ENI, and any oneof the three services can be assigned to a socket.
Multiple tasks can be handled by the ENI, but the tasks mustall
reside in the left-most processorin the rack since the ENI

communicatesonly with the left-most processor.

1.1.2

1.1.2.1

1.1.2.2

The ENI module transmits and receives at 10 Mbits per second. The

actual speed at which data can be movedfrom onestation to another

is a function of the protocol used, how fast the AutoMax processor

can give a messageto the ENI module, and the speedof the hostat
the otherstation. Of the three protocols supported, TCP has the most

overhead and raw Ethernet hasthe least overhead.

Communication Protocols

Three communication protocols are available. Transmission Control

Protocol (TCP) provides a reliable communication channel between

two tasks. User Datagram Protocol (UDP)is less reliable than TCR,

butit is faster. Raw Ethernet doesnot use upperlayer protocols.It

providesthe least features, but the fastest data throughput.

TCP Protocol

The Transmission Control Protocol (TCP) providesa reliable

communication channel(also called a virtual circuit) between two

tasks, allowing bidirectional data streams. TCP handles making,

controlling, and closing virtual connections between remote
application tasks. It guarantees that data is ordered correctly, detects

missing data and directsits retransmission, and providesflow control
to ensure that the AutoMax processorreceives no more datathanit

can process.

The maximumsize of a data packet in the TCP protocol is 1460

bytes. When continuously sending a messageofthis length from one
AutoMax rack to another, the averagerate at which data is moved is

586 KBits/sec. The CPUutilization of the AutoMax Processor (M/N
57C430A) is 31% on the sending end and 10% on the receiving end.

The TCPprotocol provides a means of slowing down the sending
Processorif the receiving Processor cannot keep up. Therefore,it is
possible to do a SEND% with a length greater than 1460 bytes. The
data to be sent is broken downinto multiple packets by the ENI
module. This requires less overhead in the AutoMax processor per

SEND%.If an array of 14600 bytes is sent, the average rate at which
data is moved is 1.08 MBits/sec. The CPUutilization of the AutoMax
Processor (M/N 57C430A)is 62% on the sending end and 25% on
the receiving end.

UDPProtocol

The UDPservice is based on the User Datagram Protocol (UDP).
This is a simple Internet Protocol-based datagram protocol whose

reliability depends on the networkintegrity. The UDP service is much
less reliable than the TCP and can be used whenspeedrather than
accuracy is paramount.

The maximum size of a packet in the UDP protocol is 1472 data
bytes. When continuously sending a messageof this length from one

AutoMax rack to another, the average rate at which data is moved is
878 KBits/sec. The CPU utilization of the AutoMax Processor (M/N
57C430A) is 54% on the sending end and 21% onthe receiving end.

1.1.2.3

1.1.4

1.2

Raw Ethernet Protocol

The Raw Ethernetservice provides communication over an Ethernet
or IEEE 802.3 network without any use of the upperlayer protocols.It

can be used when maximum throughput and minimumreliability are

required. When raw Ethernetis used, the ENI can transmit broadcast
messagesto otherstations as well as receive messagesthat were
broadcast from otherstations.

The maximum size of a packetin the raw Ethernet protocolis 1500
data bytes. When continuously sending a messageofthis length
from one AutoMax rack to another, the average rate at which data is

moved is 1.08 MBits/sec. The CPUutilization of the AutoMax
Processor (M/N 57C430A) is 69% on the sending end and 28% on
the receiving end.

IEEE 802.3/Ethernet Protocol

The IEEE 802.3/Ethernet Protocol controls the access to the

communication medium. The protocol supports the media access

method called CSMA/CD,which stands for Carrier Sense Multiple
Accesswith Collision Detection.

IEEE 802.3/Ethernet Physical Layer

The IEEE 802.3/Ethernet Physical Layer supports a data

transmission rate of 10 Mbps. The ENI module supports whatis
called the Medium AttachmentUnit interface specified in the IEEE
802.3/Ethernet standard. (The ANSI/IEEE 802.3 standard is the same
as the international standard ISO 8802-3.)

The ENI module will work with various IEEE 802.3 and Ethernet

compatible medium attachment units including thick and thin wire
Ethernet transceivers and fiber optic and broadband modems.

Selection of medium attachment units and the corresponding
communication mediumisleft to the system integrator.

Additional Information

You must be familiar with all the instruction manuals that describe
your system configuration. This may include,butis not limited to, the

following:

e@ J-3618 NORTON EDITOR INSTRUCTION MANUAL

e J-3630 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUAL

e J-3649 AutoMax CONFIGURATION TASK MANUAL

e@ J-3650 AutoMax PROCESSOR MODULE
INSTRUCTION MANUAL

e J-3670 AutoMax POWER SUPPLY MODULE and RACKS
INSTRUCTION MANUAL

e J-3675 AutoMax ENHANCED BASIC LANGUAGE
INSTRUCTION MANUAL

e J-3682 ReSource AutoMax SOFTWARE LOADING

INSTRUCTIONS VERSION2.0

1.3

e@ J-3683 ReSource AutoMax UPDATE LOADING

INSTRUCTIONS VERSION 2.0

e@ J-3684 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUALVERSION2.0

e J-3750 ReSource AutoMax PROGRAMMING EXECUTIVE
INSTRUCTION MANUALVERSION 3.0

For a detailed discussion of 4.2/4.3BSD UNIX interprocess
communications,refer to the following documents:

e@ An Introductory 4.3BSD Interprocess Communication Tutorial,

Stuart Sechrest, Department of Electrical Engineering and
Computer Science, University of California, Berkeley.

@ An Advanced 4.3BSD Interprocess Communication Tutorial, Leffler,

Fabry, Joy, and Lapsley, Departmentof Electrical Engineering and
Computer Science, University of California Berkeley.

@ ANSI/IEEE Std 802.3, The Institute of Electrical and Electronics

Engineers, Inc, New York, 1989.

Related Hardware and Software

M/N 57C440Acontains one Ethernet Network Interface Module. The
moduleis used with the following hardware and software.

The following equipment, purchased separately, can be used with
the Ethernet module:

1. M/N 570385 - DCS5000/AutoMax Power Supply Module

2. M/N57C430A, - AutoMax Processor Module

57C431, 57C435

3. Various Model - ReSource AutoMax Programming Executive

Numbers Version 2.1 orlater

2.0

2.1

MECHANICAL/ELECTRICAL
DESCRIPTION
The following is a description of the mechanical and electrical
characteristics of the Ethernet NetworkInterface module.

Mechanical Description

The Ethernet NetworkInterface (ENI) moduleis a printed circuit
board assembly that plugs into the backplane of the DCS/AutoMax
rack. It consists of the printed circuit board, a faceplate, and a
protective enclosure. The faceplate contains tabs at the top and

bottom to simplify removing the module from the rack. The enclosure

has an opening through which a jumpercan be set during
installation. On the back of the module are two edge connectorsthat

connectto the system backplane. Module dimensionsarelisted in
Appendix A.

The faceplate of the module contains a 15-pin D-type connectorthat
is used to connect the ENIto the transceiver cable. The connectoris
female, with a slide latch assembly.It conforms to the IEEE Standard

802.3 electrical interface requirements. Refer to section 2.3 and

Appendix B for additional information. A green status LEDis located

just below the connector. Upon power-upor system reset, a series of

ROM-basedtests are performedto verify proper function of the
printed circuit board. When the tests are completed, the LED should

light, indicating that the board is operational.

2-1

(om)
Ethernet
Interface
57C440A

e
o
0
0
0
0
0
N
0 °

°
°
°
°
°
°
°

[O] ok

RELIANCE,
ELECTRICAL

(LJ)

2-2

Figure 2.1- Module Faceplate

2.2 Electrical Description

The ENI module contains a 10 Mhz MC68010 microprocessorthat

performs supervisory functions using a VLSI local area network
controller for Ethernet. Memory consists of a 512 X 4-bit PROM which
contains a unique 48-bit Ethernet address, two 64K X 8 EPROMs

which control and monitor the hardware features of the ENI, and
512K bytes of Dynamic Random Access Memory (DRAM). 128K
bytes of this memory is accessible from Multibus. The module has a
Multibus interface and the signaling andtimingutilities required to

maintain communications.If loss of power occurs, communications

will be lost. The ENI mustbere-initialized to restore communications.

MC68010
10Mhz MPU

 Transceiver
Connector

Network
Parameters
PROM

 >I LANCE SIA

EPROM
2 Sockets

512KB
DRAM J

u

 System Control
Decode Clock

Interrupt

!

MULTIBUSInterface

BiDirectional Mapped Access
24Bit Address 16Bit Data

Figure 2.2- Block Diagram

2-3

2.3 Transceiver Interface

A transceiveris an interface device used for attaching the ENI module
to the Ethernet cable. A transceiver cable is used to connect the ENI

module and the transceiver. The transceiver cable consists of four
shielded twisted-pair wires and two 15-pin D-connectors (see figure

2.3). The maximum cable length is 50 meters (164 feet). See
Appendix B for additional information.

ENI Module
“

7 15-pin D-shell connector

] transceiver

cable

E
t
h
e
r
n
e
t

transceiver

\

|
15-pinYo tap

D-shell connector

2-4

Figure 2.3- Transceiver Connections

3.0 INSTALLATION
This section describes howto install and replace the ENI module.

See Appendix B for instructions on connecting the ENI to the

transceiver. Consult your Ethernet supplier for specific information
regarding installation of cables, transceivers, and other network

equipment.

THE USER IS RESPONSIBLE FOR CONFORMING TO APPLICABLE LOCAL,
NATIONAL AND INTERNATIONAL CODES. WIRING GROUNDING,
DISCONNECTS, AND OVER-CURRENT PROTECTION ARE PARTICULARLY
IMPORTANT. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN
SEVERE BODILY HARM OR LOSSOFLIFE.

3.1

3.2

Hardware Configuration

The ENI moduleis factory-configured for IEEE 802.3/Ethernet2.0.If
you are connecting to an existing network that uses Ethernet 1.0,

consult your authorized Reliance representative.

Rack Configuration

All application tasks that access an ENI module mustreside in the
left-most processorin the rack.

There can be a maximum of two ENI modulesin a rack. Each ENI
module uses twoslots of address space (128K). An ENI module may

beinstalled in any physical slot of the rack. However, the slot address
range that the module respondsto is selected with a jumper. This
jumper mustselecteither logical slot 2 or logical slot 4.If logical slot 2

is selected, then no other card, with the exception of a Processor

(M/N 57C430A), maybein slot 2 or slot 3.If logical slot 4 is selected
then no other card, with the exception of a Processor, may bein slots
4 and 5. Processors are allowed because they have no
Multibus-addressable memory.

In the following example the ENIis in physical slot 5, butit is

jumperedto respondto logical slots 2 and 3. The importantrule is

that two cards can not be in the samelogical slot. Because the
Processor does not have MultiBus memory,there is no conflict.

Slot

P/S

c
u
0

|-
+

C
U
O

|

C
U
O

lo
w

C
U
O

|+
>0

M
E
M

M
O
—
Z
M

[o
n

3-1

The second example shows two ENI modules jumpered to respond
to logical slots 2 and 4. ENI2 takes uplogical slots 2 and 3, ENI4
takes uplogical slots 4 and 5.

Slot 0 1 2 3 4 5
m| cl cl c]ele

PSTEIP| P| PININmi U}Uul ul i} t2|4

3.3 ENI Installation

Use the following procedureto install the module:

Step 1.

Step 2.

Step 3.

Turn off powerto the rack and all connections.

Take the module outof its shipping container. Takeit out of

the anti-static bag, being careful not to touch the
connectors on the back of the module.

Set the jumper(visible through the cutout in the

enclosure) for the appropriate logical slot. Refer to figure
3.1 and section 3.2.

Front ENI D-Shell Connector

fo \

JPO8
Co

om TI —

14] 13] 12) 11] 10] 9] 8 14] 13] 12) 11] 10] 9] 8

1{ 2] 3/4] 5l6| 7 1{ 2] 3/4] 5l6| 7
Setting for Logical Slot 2 Setting for Logical Slot 4

Figure 3.1- Setting Jumperfor Logical Slot Location

Step 4. Insert the module into the desired slot in the rack. Use a

screwdriver to secure the moduleinto theslot.

Step 5. Connectthe transceiver cable to the ENI according to the
manufacturer’s instructions.

Step 6. Turn on powerto the rack.

Step 7. Verify the installation. After the power-up diagnostics are

3-2

completed, the green status LED will go on.

3.4 Module Replacement

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Stop all tasks that are running.

Turn off powerto the rack.

Disconnectthe transceiver cable from the module.

Use a screwdriver to loosen the screws that hold the

module in the rack. Remove the module from theslot in

the rack.

Place the modulein the anti-static bag it camein, being
careful not to touch the connectors on the backof the

module. Place the module in the cardboard shipping
container.

Take the replacement moduleoutofits shipping container.

Takeit out of the anti-static bag, being careful not to touch
the connectors on the back of the module.

Set the jumperfor the appropriateslot.

Insert the module into the desired slot in the rack. Use a

screwdriver to secure the moduleinto the slot.

Connectthe transceiver cable to the module.

Turn on powerto the rack.

Verify the installation. After the power-up diagnostics are

completed, the green status LED will go on.

3-3

4.0

4.1

PROGRAMMING
This section provides an overview of the BASIC functions that are
used to access the ENI module. Programming examples for TCP

UDP and raw Ethernet communications are provided in section 4.2.7.
A detailed listing of the BASIC functions used in ENI application
softwareis in section 4.6. For more detailed information on the BASIC
language refer to the AutoMax Enhanced BASIC Language
Instruction Manual (J-3675).

Introduction

Establishing communication between two points on a networkis

analogousto establishing a telephone connection between two
points, A and B.

Thefirst step is for both A andB toinitialize their respective ENI
modules by executing the ENI_INIT% function.This is like asking the

phone companyto install phone servicein an office. The ENI_INIT%

function assigns a drop numberto the card, referred to as the
InterNet address.Thisis like assigning a main phone numberfor an

office.

The next step would be to assign an extension numberto every

phonein the office. For the ENI this is done with two functions,
SOCKET% and BIND%. The SOCKET% function selects the type of
service the connection is to provide. The choices are TCP UDP or

Raw EtherNet. This is somewhatlike choosing between touch tone

and pulse dial phone service. The value that is returned from the

SOCKET% function is called the socket number. This is usedin all
subsequentfunction calls to specify where to communicate. The
BIND% function then assigns a port numberto the socket. The port

numberis like the phone extension number.

After the phonesareinstalled, the next step is to place a call. This is

done with the CONNECT% function. This function specifies the
address to connectto,like a phone numberto dial. For TCP sockets

only,if point A is initiating the message (placing thecall), it must
execute a CONNECT%function and point B (waiting for messages)
must execute an ACCEPT% function.

Messagescanthen be sentorreceived by either end by executing a
SEND% or RECV% function. For example, in a phone conversation,if

you wanted someinformation, you would start bytelling the other

person what you wanted. The other person would need to hear your
request, understandit, and then respond with the answer. To dothis

with an ENI you would start with a SEND% thattells the other station

what you wanted. The other station would need to do a RECV% to
hear the message and then a SEND%to respond with the answer.In
the meantime, you would be doing a RECV% to hear the response.
Whenyou are donetalking on the phone, you say good bye and
hang upthe phone.In the ENI, when you want to end a session, you
would execute the SHUTDOWN% function.

4-1

4.2

4.2.1

4.2.2

4-2

Programming Overview

This section gives an overview of the functions in BASIC that are
used to access the ENI module. The functions are broken downinto
six categories:

e CardInitialization

@ Creation and binding of sockets

e Establishing a connection

@ Transfer of data

e Support functions

@ Shutting down sockets

The individual functions are described in detail in section 4.6.

Card Initialization

The ENI moduleisinitialized with the ENI_INIT% function.This tells
the AutoMax operating system what slot the card isin. It also assigns
an InterNet address to the module and it selects how many sockets
to allow for each of the three protocols supported. The value returned

tells if the operation was successful or not.

STATUS% = ENI_INIT%(SLOT%, ADDR$, TCP%, UDP%, ETHER%)

Creation and Binding of Sockets

A socket (channel of communication) is created with the SOCKET%
function. A socketis bidirectional,i.e., it can be used to send and
receive. The parameters of the SOCKET function select on which ENI
module to create the socket and what protocol the socketis to use.

The value returned from the SOCKETfunctionis called the socket
number. This numberis usedin all subsequent functions to select

which socket is being worked with.

SOCKET_NUM% = SOCKET%(SLOT%, TYPE%)
After a socket is created, the application program must do a BIND%

to assign a port numberto the socket. The parametersof the function

select which socket to bind and the value for the port number. An ENI
module can havea total of up to 64 sockets open at the same time.

The port numberacts as an extensionto the Internet addressin

assigning a unique address to each socket. The value returned in
STATUStells if the operation was successful or not.

STATUS% = BIND%(SN%, PORT%)

If the BIND% is not successful (STATUS% = -4), you must shut down
the socket, wait 10 seconds,then recreate the socket andbindit with

a different port number.

4.3.3

4.2.4

4.2.4.1

Establishing a Connection

For TCP sockets only, a connection must be established before
communication can begin. There are two sides to each connection,

the active side and the passive side. The active station does a
CONNECT%function and the passive station does an ACCEPT%
function. The ACCEPT% function must be executed by the passive

side prior to the active side executing a CONNECT%function. The
parameters of the CONNECT% select which socket to connect, as
well as the destination address and port number. The value returned

in STATUSindicates whether the operation was successful or not.

STATUS% = CONNECT%(SOCKET_NUM%, DEST_ADDR$,
DEST_PORT%)

Thefirst parameter of the ACCEPT% function selects which socket
should begin waiting for a connection to come. The second
parameteris the nameof the variable wherethis function will return

the value of a new socket numberthat is created. The value returned
in STATUSindicates whether the operation was successful or not.

The original socket that was waiting for a connection remains open.

The application program may loop back to the ACCEPT% function to
wait for anotherclient to connect, or the socket may be shut downif

nothing else is expected. The new socket is accessed through the
value in NEW_SOCKET_NUM.This is the socket through which the
passivestation will send and receive.

STATUS% = ACCEPT%(SOCKET_NUM%, NEW_SOCKET_NUM%)

If the TCP protocol is selected, a connection must be established
before data can be transferred.If the UDP or raw Ethernet protocols
are used, a connection is not established. However, a CONNECT%
must be executed by the station that will be sending the message to
select where to sendit to. The ACCEPT% function is not used for
UDPor raw Ethernet sockets.

Data Transfer

Data transfers can begin once a socket is created and connected.
The SEND%, SENDL%, RECV% and RECVL% functions are used to
send and receive messages.

Sending Data

To send data to anotherstation, use the SEND% or SENDL%
function. The parameters of the SEND% select which socket to work
with, the variable to send, and the numberof bytes to send. The

variable to send may be any data type. The data can be contained
within an array. Both local and commonvariables can be sent, as well
as I/O variables. The value returnedis either the total numberof
bytes sent successfully, or an error code.

BYTES_SENT% = SEND%(SOCKET_NUM%, DATA%, LENGTH%)

The parameters of the SENDL select which socket to work with and

selecta list of pointers and byte counts. This allows for building a
messagefrom various places in memory. The value returnedis either

the total number of bytes sent successfully, or an error code.

BYTES_SENT% = SENDL%(SOCKET_NUM%,LIST!)

4-3

4-4

4.2.4.2

4.2.5

4.2.6

Receiving Data

To receive data from anotherstation, use the RECV% or RECVL%
function. The parameters of the RECV% function select which socket
to work with, the variable to receive into, and the numberof bytes to

receive. The variable to receive into may be any data type. The data
can be containedwithin an array. It can also be scalar. Both local and

commonvariables can be sent, as well as I/O variables. The value
returned is either the numberof bytes received successfully, or an
error code.

BYTES_RECVD% = RECV%(SOCKET_NUM%, DATA%, LENGTH%)

The parameters of the RECVL% select which socket to work with, and

include list of pointers and byte counts. This allows for receiving a
messageinto various places in memory. The value returnedis either

the total numberof bytes received successfully, or an error code.

BYTES_RECVD% = RECVL%(SOCKET_NUM%,LIST!)

Support Functions

There are six functions that provide support for communications:

SETSOCKOPT% is used to set options for a socket.

GETSOCKOPT% is used to read the status and options selected
for a socket.

READVAR% is used to read the value of a variable
expressed asa string.

WRITEVAR% is used to write a value into a variable

expressed asa string.

FINDVAR! is used to find a pointer to variable expressed

as a string. This is used in conjunction with the

SENDL% and RECVL% functions.

CONVERT% is used to convert between Motorola and IEEE
floating point formats.It also takes care of byte
swapping when needed.

Closing Sockets

The SHUTDOWN% function closes a socket’s connection and
releasesall of its associated resources. TCP sockets only need to be
shut downat one end.Either the active or passive side mayclose the

connection. The otherside will automatically shut down. UDP and
raw Ethernet sockets need to be shut downat both ends.

STATUS% = SHUTDOWN%(socket_num%)

4.2.7

4.2.7.1

Sample Programs

The BASIC programsthat follow provide examples of sending and
receiving data using TCP UDP, and raw Ethernet sockets.

TCP Sample Program

In TCP communication, one station is active and the other stationis
passive. Thefirst step on both endsis toinitialize the ENI and assign

an Internet address to the module. This is followed by creating a
socket and binding a port numberto the socket. The active side does

a CONNECT% and the passive side does an ACCEPT%. The
parameters of the CONNECT% specify the Internet address and the
port numberof the destination. These are the same values used in

the ENI_INIT% and BIND% onthe passive side. The parameters of

the ACCEPT% specify where to write the value of a new socket that

will be created when a connection is made. The example showsthat

if the CONNECT%é is not successful, it goes back to create a new

socketto try again. After the connection is established, both sides

can send andreceive data. For this example, the active side is

sending to the passiveside. It could have been the other way,or they

could take turns sending and receiving. In TCP, for every message
sent, there is an acknowledgementreturnedto control the flow of

information. After the data has been sent, doing a SHUTDOWN% on
either side closes the sockets on both sides.

The following are examples of tasks that perform an active
connection and a passive connection for a TCP socket. The example

tasks show a STOPbeing executed whenanerroris returned. This is
doneonly to show that someaction should be taken whenanerroris

detected.It is up to the application programmerto decide the

appropriate responseto an error.

4-5

4-6

100 REM Sample program to perform an active connection and

101 REMsenddata over a TCP socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, MY_PORT%, DEST_ADDR$, DEST_PORT%

220 MY_ADDR$ = “128.10.3.89”

230 MY_PORT% = 5000

240 DEST_ADDR$ = “128.10.4.17”

250 DEST_PORT% = 5100

300 REMLocalvariables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_SENT%

330 LOCAL MESSAGE%(99), 1%, J%

1000 REM Initialize the ENI

1010 STATUS% = ENI_INIT%{ 4, MY_ADDR$, 10, 1, 6)

1020 IF (STATUS% <0) THEN STOP

1030 REM Create a socket

1040 SOCKET_NUM% = SOCKET%(4,1)

1050 IF {SOCKET_NUM% <0) THEN STOP

1060 REM Bind a port numberto the socket

1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)

1080 IF (STATUS% <0) THEN STOP

1090 REM Try to connect,if didn’t connect try again

1100 STATUS% = CONNECT%({ SOCKET_NUM%, DEST_ADDR$, DEST_PORT%)

1110 IF (STATUS% = -102) THEN DELAY 2 SECONDS \ GOTO 1040

1120 IF (STATUS% <0) THEN STOP

1130 REM Send data 100 times,if connectionlost, try to

1131 REM connect again

1140 FORI% =0TO99

1150 FOR J% = 0 TO 99

1160 MESSAGE%(J%) = J% + 1%

1170 NEXT J%

1180 BYTES_SENT% = SEND%(SOCKET_NUM%, MESSAGE%,0)

1190 IF (BYTES_SENT% = -102) THEN DELAY 10 SECONDS\ &

GOTO 1040

1200 NEXT1I%

1210 REM Shut downthe connection

1220 STATUS% = SHUTDOWN%(SOCKET_NUM%)

1230 IF (STATUS% <0) THEN STOP

32767 END

100 REM Sample program to perform a passive connection and

101 REMreceive data over a TCP socket

200 REMLocal symbolic constants

210 LOCAL MY_ADDR$, MY_PORT%

220 MY_ADDR$ = “128.10.4.17”

230 MY_PORT% = 5100

300 REMLocalvariables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL NEW_SOCKET_NUM%, BYTESRECVD%

330 LOCAL MESSAGE%(99), 1%, J%, ERROR%

400 REMInitialize to no error found

410 ERROR% = -1

1000 REMInitialize the ENI

1010 STATUS% = ENI_INIT%{ 4, MY_ADDR$, 14, 3, 2)

1020 IF {STATUS% < 0) THEN STOP

1030 REM Create a socket

1040 SOCKET_NUM% = SOCKET%(4, 1)

1050 IF { SOCKET_NUM% < 0) THEN STOP

1060 REM Bind a port numberto the socket

1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)

1080 IF (BIND_STATUS% < 0) THEN STOP

1080 REM Wait for connection to comein

1100 STATUS% = ACCEPT%{ SOCKET_NUM%, NEW_SOCKET_NUM%)

1110 IF (STATUS% < 0) THEN STOP

1150 REM Recvdata 100 times,If connectionlost,try to

1151 REM connect again

1160 FORI% =0TO99

1170 BYTES_RECVD% = RECV%{ NEW_SOCKET_NUM%, MESSAGE%,0)

1180 IF (BYTES_RECVD% = -102) THEN DELAY 10 SECONDS \ &

GOTO 1100

1190 IF (BYTES_RECVD < 0) THEN STOP

1200 FOR J% = 0 TO 99

1210 IF (MESSAGE%(J%) <> (J% + 1%)) &

THEN ERROR% = I% * 100 + J%\ STOP

1220 NEXT J%

1230 NEXT 1I%

32767 END

4-7

4.2.7.2

4-8

UDP Sample Program

In UDP communication, no connection is made. Like TCP, the
destination address of a messageis an Internet address and port
number. However, unlike TCP, the receiving station does not send an

acknowledgementto the sender. Both the sending and receiving
station start by assigning an Internet address to the module and,

after creating a socket, bind a port numberto the socket. The station
that will be sending the data then does a CONNECT%to specify the
destination Internet address and port number. Thestation that will be

receiving the data does not do an ACCEPT%,; it does a RECV%.After

the data has beensent, both sides must do a SHUTDOWN%to close
the sockets.

100 REM Sample program to send data over a UDP socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, MY_PORT%, DEST_ADDR$, DEST_PORT%

220 MY_ADDR$ = “128.10.3.89”

230 MY_PORT% = 5000

240 DEST_ADDR$ = “128.10.4.17”

250 DEST_PORT% = 5100

300 REMLocalvariables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_SENT%

330 LOCAL MESSAGE%(99), 1%, J%

1000 REMInitialize the ENI
1010 STATUS% = ENI_INIT%(4, MY_ADDR$, 3, 12,1)
1020 IF (STATUS% <0) THEN STOP

1030 REM Create a UDP socket

1040 SOCKET_NUM% = SOCKET%(4, 2)

1050 IF {SOCKET_NUM% <0) THEN STOP

1060 REM Bind a port numberto the socket

1070 STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)

1080 IF (STATUS% <0) THEN STOP

1090 REM Fill in destination parameters

1100 STATUS% = CONNECT%({ SOCKET_NUM%, DEST_ADDR$, DEST_PORT%)

1110 IF (STATUS% <0) THEN STOP

1120 REM Send data 100 times

1130 FORI% =0TO99

1140 FOR J% = 0TO 99

1150 MESSAGE%(J%) = J% + 1%

1160 NEXT J%

1170 BYTES_SENT% = SEND%(SOCKET_NUM%, MESSAGE%,0)

1180 NEXT1I%

1190 REM Shut downthe socket

1200 STATUS% = SHUTDOWN%(SOCKET_NUM%)

1210 IF {STATUS% <0) THEN STOP

32767 END

100

200

210

220

230

300

310

320

330

400

410

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

32767

REM Sample program to receive data over a UDP socket

REM Local symbolic constants

LOCAL MY_ADDR$, MY_PORT%

MY_ADDR$ = “128.10.4.17”

MY_PORT% = 5100

REMLocalvariables

LOCAL STATUS%, SOCKET_NUM%

LOCAL BYTES_RECVD%

LOCAL MESSAGE%(99), 1%, J%, ERROR_CNT%

REMInitialize error counter

ERROR_CNT% = 0

REMInitialize the ENI

STATUS% = ENI_INIT%{ 4, MY_ADDR$, 4, 13, 2)

IF (STATUS% < 0) THEN STOP

REM Create a UDP socket

SOCKET_NUM% = SOCKET%(4, 2)

IF (SOCKET_NUM% < 0) THEN STOP

REMBind a port numberto the socket

STATUS% = BIND%{ SOCKET_NUM%, MY_PORT%)

IF (STATUS% < 0) THEN STOP

REM Recv data 100 times

FOR I% = 0 TO 99

BYTES_RECVD% = RECV%{ SOCKET_NUM%, MESSAGE%,0)

FOR J% = 0 TO 99

IF (MESSAGE%(J%) <> (J% + 1%))

THEN ERROR_CNT% = ERROR_CNT% + 1

NEXT J%

NEXT 1%

REM Shut downthe socket

STATUS% = SHUTDOWN%(SOCKET_NUM%)

IF (STATUS% < 0) THEN STOP

END

4-9

4.2.7.3

4-10

Raw Ethernet Sample Program

In raw Ethernet communication, no connection is made. When a
messageis sent, every station on the networklistens to seeif the
messageis intendedforit. Every Ethernet module has a unique

address. To send a messageto a particular station, you need to
know the Ethernet addressof that module.It is also possible to send

or receive broadcast data. This is donein the following example.In
TCP and UDPall you need to knowis the Internet address and port
numberof a station over which you have conirol.

As in TCP and UDRthefirst step on both endsis to initialize the
module with ENI_INIT%. An Internet address muststill be given to the
module, even thoughthis protocol does notuseit. After a socketis

created and a bind is done,the sending station does a CONNECT%
to specify where to send the message. The value for addr$ in the
connect must be the Ethernet address or a broadcast addressthat
the destination will recognize. The only broadcast address the ENI
recognizes is FFFFFFFFFFFF. The value for port% in the connect

must be the same value usedin the bind on the receiving station.
The value for port% is also used to select the ‘packet type’ in the

message. See section 4.3 for more information on frame format. A
station can have more than one Ethernet socket open; the packet

type is used to select which socket an incoming messagewill be
givento.

100

101

200

210

220

230

240

250

300

310

320

330

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

32767

REM Sample program to send data over a raw Ethernet

REM socket

REM Local symbolic constants

LOCAL MY_ADDR$, MY_TYPE%, DEST_ADDR$, FRAME_TYPE%

MY_ADDR$ = “128.10.3.89”

MY_TYPE% = 5100

DEST_ADDR$ = “FFFFFFFFFFFF”

FRAME_TYPE% = 5200

REMLocalvariables

LOCAL STATUS%, SOCKET_NUM%

LOCAL BYTES_SENT%

LOCAL MESSAGE%(99), 1%, J%

REMInitialize the ENI

STATUS% = ENI_INIT%{ 4, MY_ADDR$, 3, 1, 10)

IF (STATUS% < 0) THEN STOP

REMCreate a raw Ethernet socket

SOCKET_NUM% = SOCKET%(4, 3)

IF (SOCKET_NUM% < 0) THEN STOP

REMBind a port numberto the socket

STATUS% = BIND%{ SOCKET_NUM%, MY_TYPE%)

IF (STATUS% < 0) THEN STOP

REMFill in destination parameters

STATUS% = CONNECT%{ SOCKET_NUM%, DEST_ADDR$, FRAME_TYPE%)

IF (STATUS% < 0) THEN STOP

REM Senddata 100 times

FOR I% = 0 TO 99

FOR J% = 0 TO 99

MESSAGE%(J%) = J% + 1%

NEXT J%

BYTES_SENT% = SEND%{ SOCKET_NUM%, MESSAGE%,0)

NEXT 1%

REM Shut downthe socket

STATUS% = SHUTDOWN%(SOCKET_NUM%)

IF (STATUS% < 0) THEN STOP

END

100 REM Sample program to receive data over a raw Ethernet

101 REM socket

200 REM Local symbolic constants

210 LOCAL MY_ADDR$, FRAME_TYPE%

220 MY_ADDR$ = “128.10.4.17”

230 FRAME_TYPE% = 5200

300 REMLocal variables

310 LOCAL STATUS%, SOCKET_NUM%

320 LOCAL BYTES_RECVD%

330 LOCAL MESSAGE%(99), 1%, J%, ERROR_CNT%

400 REMInitialize error counter

410 ERROR_CNT% = 0

1000 REM Initialize the ENI

1010 STATUS% = ENI_INIT%{ 4, MY_ADDR$, 4, 1, 12)

1020 IF (STATUS% <0) THEN STOP

1030 REM Create a raw Ethernet socket

1040 SOCKET_NUM% = SOCKET%(4, 3)

1050 IF {SOCKET_NUM% <0) THEN STOP

1060 REM Bind a port numberto the socket

1070 STATUS% = BIND%(SOCKET_NUM%, FRAME_TYPE%)

1080 IF (STATUS% <0) THEN STOP

1090 REM Recv data 100 times

1100 FORI% =0TO99

1110 BYTES_RECVD% = RECV%(SOCKET_NUM%, MESSAGE%,0)

1120 FOR J% = OTO 99

1130 IF (MESSAGE%(J%) <> (J% + 1%))

THEN ERROR_GNT% = ERROR_CNT% + 1

1140 NEXT J%

1150 NEXTI%

1210 REM Shut downthe socket

1220 STATUS% = SHUTDOWN%(SOCKET_NUM%)

1230 IF (STATUS% < 0) THEN STOP

32767 END

4.3

4.3.1

Raw Ethernet Notes

Every ENI module has a unique factory-assigned Ethernet address
stored in ROM memory. After the ENI has beeninstalled in the rack
andinitialized by the ENI_INIT% function, the value of this 6-byte
numbercan be read by the programming terminal using the Monitor

1/0 utility in the AutoMax Programming Executive software.This utility
is used to read and write selected addresses across Multibus. See
J-3750 for more information on Monitor I/O. The Ethernet addressis
required only if you want to communicate using raw Ethernet. For

TCP or UDP communction,the Internet addressis user-defined via
the ENI_INIT function.

In a network whichutilizes raw Ethernet communication, replacing a

faulty ENI module will change the address of that Ethernet node.
Application programs which communicate with that node will require

changesto specify the new Ethernet node address.

To read the Ethernet address,display the following three registers in

the logical slot selected for the card: 2316, 2317, 2318. Display these
registers in hexadecimal format. The address is composed of the
contents of each of the three registers strung together. For example,
the sample display values shown belowindicate the Ethernet

address 02CF1F305599.

 Slot Register Value

2 2316 02CF

2 2317 1F30
2 2318 5599

Ethernet Frame Format

A raw Ethernet frame consists of a 6-byte destination address, a
6-byte source address, a 2-byte typefield, 48 to 1500 data bytes, and
a CRC (Cyclical Redundancy Check) as shownbelow.

6 Bytes 6 Bytes 2 Bytes 48 to 1500 Bytes

| Dest Addr | Src Addr | Type | Data... | CRC

The destination address is the number assigned to the socket with
the CONNECT%function. For raw Ethernet sockets, the CONNECT%
function doesn’t send a messageto the destination as it does in TCP;
instead, it only records the destination addressfor later use by the
SEND% function. The source addressis the raw Ethernet addressof
the stations sending the message. Thetype is used to determine
whatprotocol is used. For raw Ethernet messages,Typeis the port

numberthat was assigned to the socket with the BIND% function.
There are two reserved numbersfor Type that may not be used by

raw Ethernet messages: decimal 2048 and 2054.It is recommended
that port numbers begin at 5000.

4-13

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.5

4-14

Data Formats

The following section describes the internal representation of data
types used in AutoMax. See the AutoMax Enhanced BASIC
LanguageInstruction Manual (J-3675) for more information.

Booleans

A booleanis a bit in a 16-bit word. Individual bits can not be sent or
received. The smallest amount of data that can be sentis 1 byte (8
bits). If a single boolean variable is sent, 7 other bits are sent withit.If
CONVERT“is not used, a booleanarray is transmitted bits 7..0 first
followed by bits 15..8, and so on.

Integers

Integers are stored in 2 bytes, high bytefirst. If CONVERT% is not
used,the high byte is transmittedfirst.

Double Integers

Double integers are stored in 4 bytes, high bytefirst. If CONVERT% is
not used, the high byte is transmittedfirst.

Reals

Real numbersarestored in 4 bytes. The format of the numberis
optimized for performance on the processor. It consists of a 24-bit
mantissa, a 1-bit sign, and a 7-bit exponent in excess 64. This may
be converted to IEEE standard with the CONVERT% function.

Strings

The default length of a string is 32 characters. This takes 34 bytesin

memory. Thefirst byte of a string contains the numberof bytes
available for string storage and the second byteindicates the actual
length of the string variable. This is followed bythestringitself.

Use of Hardware Interrupts in Racks
Containing Ethernet or Network Modules

This section is applicable only to racks that contain Current Minor

Loop (CML) tasks or hardware EVENTstatements in BASIC or
Control Block tasks. These two kinds of tasks require Processors to

allocate hardwareinterruptlines on the rack backplane because
some portion of task execution depends uponreceiving a

user-defined hardwareinterrupt from another module in the rack,

e.g., a Resolver Input module. The remainderof this section will first
describe the basic method by whichinterruptlines are allocated and
then how Ethernet modulesaffect the allocation process. See the

Enhanced BASIC Languageinstruction manual (J-3675) for more
information on hardware EVENT statements and the Control Block

Languageinstruction manual (J-3676) for more information on CML
tasks.

4.5.1

Because the numberofinterruptlinesis limited to four, it is necessary
to take into accountthe rules by whichtheyare allocated in order to

prevent errors when application tasks are put into run. Each of the

four interrupt lines can “service” one of the following:

a) up to four BASIC language hardware EVENTstatementsthat are
found in BASIC or Control Block tasks

b) one CMLtask (usedin racks containing drive modules only)

Any one Processor module can allocate up to one of the four
interrupt lines for 0-4 hardware EVENTstatements and oneline for a

CMLtask. (CMLtasks are limited to to 2 per rack because of drive
module configuration restrictions.) Note that a minimum of one
hardwareinterruptline will be allocated for a Processor module
regardless of whether one or four hardware EVENTstatements are
usedin application tasks loaded on that Processor.

The following examplesof interruptline allocation assumethat there
are three Processor modulesin the rack. Note that these examples

do not take into account the efficiency of distributing application
tasks between Processor modulesin this manner(in terms of system
performance) and do not include Ethernet Network Interface
modules (M/N 57C440A)or Network modules (57C404A orlater
only). These two moduleswill be addedin later examples.

Examplesof Interrupt Line Allocation

The following are examplesofinterrupt line allocation.

Example #1

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

— | ew Xx

—_—_*x

4 hardware EVENT NohardwareEVENT 2 hardware EVENT

statements or statements

statementsin CMLtasks.

BASIC orControl

Block tasks.

— =Interrupt Line N = Network Modules

= Hardware EVENTStatement E = Ethernet Modulesx

CML = CML Task

4-15

Example #2

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

— — CML
— ——— XX XX ———™&—

—x
— CML

1 CMLtask 4hardware EVENT 1 hardware EVENT

statements statement

— Interrupt Line

x = Hardware EVENT Statement
CML = CMLTask

1 CMLstatement

N = Network Modules
E = Ethernet Modules

Example #3

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

—_—x
— — CML
— —_—rx

1 hardware EVENT 1 CML task and No hardware EVENT

statement

— Interrupt Line

x = Hardware EVENT Statement

CML = CMLTask

3 hardware EVENT

statements

N=

E = Ethernet Modules

statements or

CMLtasks

Network Modules

Example #4

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

— — CML
— — CML ——_—___

— x» x—————_.
— — x x —_

1 CMLtask 2 hardware EVENT 2 hardware EVENT

statements statements

1 CMLtask

— Interrupt Line

x = Hardware EVENT Statement
CML = CMLTask

4-16

N = Network Modules
E = Ethernet Modules

4.5.2

— —x« x x-x NE—

Examplesof Interrupt Allocation with Ethernet or

Network Modulesin the Rack

With the addition of Ethernet Network Interface modules or Network

modules (M/N 57C404Aandlater only) to the rack, examples #2 and
#4 in section 4.5.1 would cause an error (code 44 displayed on the

Processor LEDs) when tasks were put into run and would not allow

them to gointo run. The following section explains the allocation of

interrupts when Ethernet and Network modules are added to the
examplesin 4.5.1.

Ethernet and Network modules require the allocation of an interrupt

line by the leftmost Processor modulein the rack. The presence of
either or both of these two modulesin any quantity will require a

single interrupt line on the leftmost Processor. The interrupt line
required by these modules can, however, be shared with four

hardware EVENTstatements, but cannot be shared with the interrupt

line required by a CMLtask.

If two Ethernet modules and two Network modules were added to the
rack in the above examples,the following would occur. Note that
wheneither of these modules are addedto the rack,the leftmost

Processor module will show an increase in CPU utilization
(processing capacity used). The CPUutilization statistic is available
through the Programming Executive software.

Example #1

The Ethernet and Network modules would share theinterruptline

with the four hardware EVENTstatementsin the left-most Processor
module.

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

=

— Interrupt Line N = Network Modules
x = Hardware EVENTStatement E = Ethernet Modules

CML = CMLTask

Example #2

This example would cause an error when application tasks were put

into run. The CMLtaskin the leftmost Processor module cannot

shareits interrupt line, and the remaining threelines are already

allocated (one on Processorin slot 2, two on Processorin slot 3).

Onesolution to this problem would be to move the CMLtask from

the Processorin slot 1 to the Processorin slot 2 and the task(s)
containing the four hardware events from the Processorin slot 2 to

the Processorin slot 1. The Ethernet and Network modules could
sharethe interruptline required for the EVENT statements in the

left-most Processor.

Slot 1 Slot 2 Slot 3

Processor Processor Processor
Module Module Module

—_— |__| —CME
| eKNE

— x———_

— CML—————_

— Interrupt Line N = Network Modules
x = Hardware EVENT Statement E = Ethernet Modules

CML = CMLTask

Example #3

The Ethernet and Network modules would share the line required for

the hardware EVENTstatementin the leftmost Processor. Note that

this line can be shared whetherit is used for 1, 2, 3, or 4 EVENT

statements.

Slot 1 Slot 2 Slot 3
Processor Processor Processor
Module Module Module

— |— x-x NE
— —— — CML
—_— _™___— XXX

— = Interrupt Line N = Network Modules

x = Hardware EVENT Statement E = Ethernet Modules
CML = CMLTask

Example #4

This example would cause an error when application tasks were put

into run. Fourinterrupt lines have already been allocated. The
leftmost Processor module hasallocated onefor its CML application
task. The Processor modulein slot 2 has allocated one for two

hardware EVENTstatements and onefor its CML task. The Processor

modulein slot 3 has allocated one for two hardware EVENT

statements. There are nolinesleft for the left-most Processor to

allocate for the Ethernet and Network modules, and the interruptline
required for the CML task cannot be shared.

Onesolution is to move the CMLtask from the Processorin slot 1 to
the Processorin slot 3 and to movethetask or tasks containing two

hardware EVENTstatements to the Processorin slot2. In this case,

the Processorin slot 2 still requires one interrupt line. The Processor

modulein slot 3 requires oneinterruptline. The left-most Processor

will allocate an interruptline for the Ethernet and Network modules.
Note that this line could be shared with up to four EVENT statements.

4.6

Slot 1 Slot 2 Slot 3

Processor Processor Processor
Module Module Module

— CML———
— — CML
— |— NE
— —eeXX

— = Interrupt Line N = Network Modules
x = Hardware EVENT Statement E = Ethernet Modules

CML = CMLTask

Functions

The BASIC functions that follow are used in application software

written for use with the Ethernet NetworkInterface.

Whena function is executed, a value is returned in the variable
specified. A negative value indicates an error. The error codesfor

eachfunctionarelisted in the function descriptions. Appendix C
containsa list of all the ENI error codes. Application software must

checkfor these error codes.

4-19

4.6.1

4-20

ENI_INIT% Function

Format:

ENI_INIT%(slot%, addr$, tcp%, udp%, ether%)

where:
slot% is the logical slot the ENIis to be in. This can be a

variable or a constant. The only legal values are 2 or4.
See section 3.2 for information on rack configuration.

addr$ is the Internet address you assign to the ENI. This is a
string of four decimal numbers separated by decimal
points, each ranging from 0 to 255.A typical addressis
128.0.0.10. (Note that 128.0.0.0 is an illegal address.)

tcp% defines the numberof sockets to use for the TCP

protocol.

udp% defines the numberof sockets to use for the UDP

protocol.

ether% defines the numberof sockets to use for raw Ethernet.

The ENI_INIT% function commandsthe Ethernet NetworkInterface to
go throughitsinitialization. The ENI supports three types of
protocols: TCR UDP. and raw Ethernet. Up to 64 channels (sockets)
can be assignedto each ENI. Part oftheinitialization selects how

may sockets to allow for each protocol. At least one socket must be
defined for each protocol. The green LED onthefront of the ENI will
turn off for approximately 10 seconds while theinitialization is

performed.

Values Returned:

1 Success
-1 ENI failed self test

-8 Buserror

-10 Error allocating interrupts

-11 Bad slot number

-12 Bad Internet address

-13 Total numberof sockets >64

For example:

STATUS% = ENIINIT%(4, “128.0.0.10”, 32, 10, 3)

4.6.2 SOCKET% Function

Format:

SOCKET%(slot%, type%)

where:

slot% is the logical slot the ENIis to be in. This can be a

variable or a constant. The only legal values are 2 or 4.

See section 3.2 for information on rack configuration.

type% is used to select the protocol for this socket.

Legal values for type are:

1 fora TCP socket

2 fora UDP socket

3 fora Raw EtherNet socket

This function will find an available socket of the requested type.If
successful, the value returned is the numberof the socket allocated.
The socket numberis a 16-bit word (e.g., 022FH). Thefirst byte is the
logical slot the ENI is jumpered to (02 or 04) and the secondbyte is

the socket (00-3F). All subsequentfunction calls to communicate with

the ENI use this socket numberto select the socket to talk through.

Values Returned:

>0 The socket numberallocated

-2 ENInotinitialized

-3 Did not create socket

-9 No buffer space

-11 Bad slot number

-14 Bad socket type
-40 Noavailable buffer

For example:

SOCKET_NUM% = SOCKET%(4, 1)

4-21

4.6.3

4-22

BIND% Function

Format:

BIND%(sn%, port%)

where:

sn% is the numberof the socket you wantto bind. This is
the value that was returned from the SOCKET%
function. This can be specified as a simple variable or
as an elementof an array.

port% is the local port number you want to give to the socket.
Begin assigning port numbers at 5000. Port numbers
must be unique. A port numbercannot be reassigned
unless the socket using that number has beenclosed.
For raw Ethernet sockets, this value is used to select
the value of the 16-bit packet type in the message
header.

This function assigns a local port numberor Ethernet packet type to

a socket.

Values Returned:

1 Success
-2 ENInotinitialized

4 Did not bind socket

-9 No buffer space

-15 Bad socket number

-40 ~—Noavailable buffer

For example:

STATUS% = BIND%(SN%, 5000)

4.6.4 CONNECTFunction

Format:

CONNECT%(sn%, addr$, port%)

where:

sn% is the numberof the socket you want to connect to a

destination. This is the value returned from the

SOCKET% function. This can be specified as a simple
variable or as an elementof an array.

addr$ is the destination Internet (used with TCP and UDP) or
Ethernet (used with raw Ethernet) address you want to

connect to. See ENI_INIT for applicable rules for
Internet addresses. Ethernet addresses are 12-digit
Hex numberstrings.

port% is the destination port number you want to connectto.

This function assigns a permanent destination for a socket.It must be
executed before any messagescan be sent using anyof the three
protocols. For raw Ethernet or UDP sockets,this function is used only
to specify the destination address. For TCP sockets,it directs the ENI

to do an active open. A passive open (ACCEPT%), done by the
destination TCP socket, must occurpriorto this function being

executed to establish a connection. After the connection is made,
messages can be exchanged.

If connecting a TCP socket and the other endis not ready to accept

the connection, the socketwill be closed. To try to connect again, the
application must create a new socket andbindit again.

For raw Ethernet sockets, the port number defines the packettype of
all messagesthat will be sent. The receiving end must do a BIND%
with the same value for the port number.

Values Returned:

1 Success
-2 ENInotinitialized

-9 No buffer space

-12 Bad InterNet address
-15 Bad socket number
-40 No available buffer
-102 Socket not connected

For example:

STATUS% = CONNECT%(SN%, DEST_INET_ADDR$, 5001)

4-23

4.6.5

4-24

ACCEPT% Function

Format:

ACCEPT%(sn%, nsn%)

where:
sn% is the numberof the TCP socket that should begin

waiting for a connection to be made. This can be
specified as a simple variable or as an element of an

array.

nsn% is filled in by this function with a new socket number
created when a connection has been established. This

must be a simple variable; array elements are not
allowed.

This function is used to direct the ENI to do a passive open.This is

valid only on TCP sockets. This function suspends execution of the
task and waits until a connection is established. When a connection
arrives,it creates a new socketwith the attributes of the given socket

to service the connection. The application program may then shut
downtheoriginal socket sn%,or it may loop back to the ACCEPT%

to wait for another connection to comein.In this way a given service

may have more than oneclient at a time. Communication will take
place through the newsocket.

Values Returned:

1 Success
-2 ENInotinitialized

-7 Did not accept

-9 No buffer space

-15 Bad socket number

-16 NotaTCP socket
-40 No available buffer

For example:

STATUS% = ACCEPT%(SN%, NSN%)

4.6.6 SEND% Function

Format:

SEND%(sn%,var, len%)

where:

sn% is the numberof the socket through which the
messageis to be sent. This is the value that was

returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an
elementof an array.

var is the variable that has the data to send. It can bea
boolean, integer, double integer, real, string, or an
array of these types. It may be local or common.If an
array is specified, no subscript may be given. It will
alwaysstart with the zeroth elementof the array.

len% is the numberof bytes to send beginning at var. This

parameter can be a constant, an integer, or a double
integer.

lf var is an array, and len% is zero, the length to sendis the size of

the array. An error is generatedif len% is greater than the size of the
array.

This function causes a message to be sentto the destination as
defined by the socket number.

lf a TCP socketis specified, it must be connectedfirst (receiving side

executes an ACCEPTfunction, then sending side executes a
CONNECTfunction).

Values Returned:
>0O Numberof bytes transferred
-2 ENInotinitialized
-9 No buffer space

-15 Bad socket number
-17 Messagetoo long, UDP > 1472, ETH > 1500

-18 Zero length for non-array

-26 Array is not single dimension
-32 Beyond end of array
-40 No available buffer
-102 Socket not connected

For example:

XMIT_LEN% = SEND%(SN%, SET_POINTS%, MSG_LEN%)

where SET_POINTS% is the nameof an array.

4-25

4.6.7

4-26

SENDL% Function

Format:

SENDL%(sn%,list!)
where:

sn%

list!

is the numberof the socket through which the
messageis to be sent. This is the value that was
returned from the SOCKET% or ACCEPT%function.
This can be specified as a simple variable or as an

elementof an array.

is a one-dimensional double integer array whosesize
is limited only by memory capacity. The valuesin this

array define where to get the data to send. No

subscript is given on this parameter.

Beginningatlist! (0), the values in the array are
structured so that an entry consists of two double
integers.

Data Pointer

Convert Mode | Byte Count

The even numbered elements of the array contain a
pointer indicating where to put data received. These
pointers are found with the VARPTR! or FINDVAR!

functions.

LIST! (0) = FINDV! (VAR_NAME$)
The odd numbered elements contain the numberof
bytes to receive in the low word and a convert modein

the high word. The value for convert modeis the same
as used in the CONVERT% function to change data
formats. The following example converts from IEEE to

Motorola floating point format.

LIST! (1) = BYTE_COUNT% + 00020000H

Suchpairs of elements may be repeated as often as

necessay with the only limitation being that UDP
messages may not exceede 1472 bytes and raw
Ethernet messages may not exceede 1500 bytes.

Thelist is terminated by a data pointer with a value of

zero.

This function causes a messageto be sent to the destination as
defined by the socket number.

Ifa TCP socketis specified, it must be connectedfirst (passive side

executes an ACCEPTfunction, then active side executes a
CONNECTfunction).

Values Returned:

>0Q Numberof bytes transferred
-2 ENInotinitialized
-9 Nobuffer space
-15 Bad socket number
-17 Messagetoo long
-18 Zero length
-19 Illegal Pointer

-25 Nota double integer array
-26 Notasingle dimension array
-27 ‘Bad array format
-30 Odd numberofbytesin list parameter
-40 No available buffer
-102 Socket not connected

For example:

XMIT_LEN% = SENDL%(SN%, NETWORK_LIST!)

4-27

4.6.8 RECV% Function

Format:

RECV%(sn%,var, len%)

where:
sn% is the numberof the socket through which the

messageis to be received. This is the value that was
returned from the SOCKET% or ACCEPT%function.

This can be specified as a simple variable or as an

elementof an array.

var is the variable where the data receivedis written. It can
be a boolean,integer, double integer, real, string, or an
array of those types.If an array is specified, no
subscript may be given.

len% is the numberof bytes to receive. This parameter can
be a constant, an integer, or a double integer.

If var is a simple variable and len% is greater than the

size of the simple variable, then var must be defined as
I/O to avoid overwriting AutoMax memory.

If var is an array, and len% is zero, the length to receive
is the size of the array. An error is generatedif len% is

greater than the size of the array.

For TCPonly,if len% is -1, the numberof bytes
received will be returned to the sender.

This function writes up to LEN% bytes of data from socket SN% into
the variable VAR.If a TCP socketis specified, it must be connected

first.

A socket can be selected as blocking or non-blocking.If the socketis
designated as blocking and no data has comein,the task will be

suspendeduntil data arrives.If the socket is designated as
non-blocking and no data has comein, the RECV% commandwill
return with the error “No message waiting”. The default modeis
blocking.

Values Returned:

>0 Length of message received
-2 ENInotinitialized
-9 Nobuffer space
-15 Bad socket number
-17 Message too long
-18 Zero length for non-array

-26 Array is not single dimension

-29 Max size of strings are not equal

-31 Max size of string < recvsize of string
-32 Beyond endof array
-101 No message waiting
-102 Socket not connected

For example:

RECV_LEN% = RECV%(SN%, SET_POINTS%, LEN%)

4-28

4.6.9 RECVL% Function

Format:

RECVL%(sn%,list!)
where:

sn%

list!

is the numberof the socket through which the

messageis to be received. This is the value that was

returned from the SOCKET% or ACCEPT% function.
This can be specified as a simple variable or as an

elementof an array.

is a one-dimensional double integer array whose size

is limited only by memory capacity. The valuesin this
array define where to put the data received. No
subscript is given on this parameter.

Beginningatlist! (0), the valuesin the array are
structured so that an entry consists of two double
integers.

Data Pointer

Convert Mode | Byte Count

The even numbered elementsof the array contain a

pointer indicating where to put data received. These
pointers are found with the VARPTR! or FINDVAR!

functions.

LIST! (0) = FINDV! (VAR_NAME$)
The odd numbered elements contain the numberof
bytes to receive in the low word and a convert modein
the high word. The value for convert modeis the same
as used in the CONVERT% function to change data
formats. The following example converts from IEEE to
Motorola floating point format.

LIST! (1) = BYTE_COUNT% + 00020000H

Suchpairs of elements may be repeated as often as

necessaywith the only limitation being that UDP

messages may not exceede 1472 bytes and raw

Ethernet messages may not exceede 1500 bytes.

Thelist is terminated by a data pointer with a value of
zero.

This function receives data from socket SN% into memory pointed to

bythelist. All pointers must reference variables defined as |/O.
Pointers may not reference variables defined in the Common Memory

Module or AutoMax Processor. If a TCP socketis specified, it must be

connectedfirst.

A socket can be selected as blocking or non-blocking.If the socketis
designated as blocking and no data has comein,the task will be
suspendeduntil data arrives. If the socket is designated as
non-blocking and no data has comein, the RECVL% commandwill
return with the error No message waiting. The default modeis

blocking.

4-29

4-30

Values Returned:

>0 Numberof bytes transferred
-2 ENInotinitialized

-9 No buffer space

-15 Bad socket number
-17 Messagetoo long

-18 Zero length
-19 Illegal pointer

-25 Nota double integer array
-26 Notasingle dimension array

-27 Bad array format

-30 Odd numberofbytesin list parameter
-37 Pointing to on-board memory
-101 No message waiting
-102 Socket not connected

For example:

RECV_LEN% = RECVL%(SN%, NETWORK_LIST!)

4.6.10 SETSOCKOPT% Function

Format:

SETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the numberof socket whose option you wantto set.

opnum% is the numberof the optionto set.

opval% is the value to write into the ENI.

This function is used to select different modes of operation.

OPNUM% selects which option to change, and OPVAL% selects the
mode of operation.

Options OPNUM% OPVAL% Description

“Keep Alive” 0008h 0 Keepalive is disabled (Default)

1 Keepalive is enabled

This option is only used on TCP sockets. When enabled, the ENI will

periodically send an empty messageto maintain the connection.If
this option is not used and a frameis not received within 8 minutes,

the ENI will assume the connection has been brokenandit will close
this socket.

“Linger” 0080h 0 Lingeris disabled (Default)
1 Linger is enabled

This option is only used on TCPsockets to select how the
SHUTDOWNfunction will operate. Whenlinger is enabled, the socket
will wait until remote SHUTDOWN% is completed before shutting
down.

“Non Blocking” 0200h 0 NonBlocking is disabled
(Default)

1 Non Blocking is enabled

This option is used to select how the RECV% and RECVL% function
will operate. If Non blocking is enabled and no messagehasarrived
for the RECV% or RECVL%, control is returned to the application

program and anerror code -101 is returned by the RECV% or

RECVL%.

Values Returned:

1 Success

-2 ENInotinitialized

5 Did not set option
-9 No buffer space

-15 Bad socket number

-20 Bad option number

-21 Bad option value

-40 No available buffer

For example, to set the socket to nonblocking:

STATUS% = SETSOCKOPT%(SN%, 0200h,1)

4-31

4.6.11

4-32

GETSOCKOPT% Function

Format:

GETSOCKOPT%(sn%, opnum%, opval%)

where:

sn% is the numberof socket whoseoption you want to
read.

opnum% is the numberof the option to read.

opval% is the nameof the option variable where the current

value is written.

This function is used to examine what modesof operation are

selected. OPNUM%selects which option to look at, and OPVAL%
displays the current status.

Options OPNUM% OPVAL% Description

“Keep Alive” 0008h 0 Keepalive is disabled (Default)

1 Keepalive is enabled

This option is only used on TCP sockets. When enabled,the ENI will

periodically send an empty message to maintain the connection. If
this option is not used and a frameis not received within 8 minutes,
the ENI will assume it has been broken.

“Linger” 0080h 0 Lingeris disabled (Default)

1 Linger is enabled

This option is only used on TCPsockets to select how the

SHUT-DOWNfunction will operate. Whenlinger is enabled and there
are messagesin any transmit or receive queues the ENI will process

those messages before doing the shutdown.

“Non Blocking” 0200h 0 Non Blockingis disabled
(Default)

1 NonBlocking is enabled

This option is used to select how the RECV% and RECVL% function
will operate. If Non Blocking is enabled and no messagehasarrived
for the RECV% or RECVL%, control is returned to the application

program andanerror code-101 is returned by the RECV% or
RECVL%.

“Connected” 0800h -102 Socket not connected
1 Socket connected

This option is only used on TCP sockets. It allows the application

programto testif a connection is established without doing a SEND%
or RECV%.

Values Returned:

1 Success
-2 ENInotinitialized

-6 did not get option
-9 Nobuffer space
-15 Bad socket number

-20 Bad option number

-40 No available buffer

-100 No buffer space

For example,to test if the socket is connected:

STATUS% = GETSOCKOPT%(SN%, 0800h, OPTION_VALUE%)

4.6.12 SHUTDOWN% Function

Format:

SHUTDOWN®%(sn%)

where:

sn% is the numberof the socket for which the connection

should be terminated.

This function closes the socketto allow it to be re-used at a later time.

TCP sockets need to be shut downatonly one end.Either the active
or passive side may close the connection. The otherside will
automatically shut down. UDP and raw Ethernet sockets need to be

shut downat both ends.

Values Returned:

1 Success
-2 ENInotinitialized

7 Nofree channel

-15 Bad socket number

-28 Socket closed by destination
-40 No available buffer

For example:

STATUS% = SHUTDOWN%(SOCKET_NUM%)

4-33

4.6.13

4-34

READVAR% Function

Format:

READVAR%(vn§,value)

where:
vng$ is a string expression for the nameof the variable to

read. It can be a boolean,integer, double integer,real
or string, or an array of these types. Only
one-dimensional arrays are allowed.

value is the variable where the value readis written.

This function accepts a variable nameasa string expression and
returns the value in variable VALUE. Thestring that defines the

variable name musthavea suffix as follows:
@ Booleans
% Integers
! Double integer

$ Strings
Nosuffix Reals

If specifying an array element, the subscript must be after the data
type characterif there is one. Only commonvariables can be

accessed.

Values Returned:

1 Success
-22 Variable not found
-23 Data type mismatch

For example:

VARIABLE_NAME$ = “SET_POINTS(17)”

STATUS% = READVAR%(VARIABLE_NAMES$, VALUE)

4.6.14 WRITEVAR% Function

Format:

WRITEVAR%(vn, value)

where:

vng$ is a string expression for the nameofthe variable to

write to. It can be a boolean,integer, double inte ger,

real or string, or an array of these types. Only
one-dimensionalarrays are allowed.

value is the variable that has the value to write.

This function accepts a variable nameasa string expression and a

value to write into the variable. The string that defines the variable
name musthave a suffix as follows:
@ Booleans

% Integers
| Double integers
$ Strings
No suffix Reals

If specifying an array element, the subscript mustbe after the data
type characterif there is one.

If the data type of the variable, as definedin the string vn§,is different
than that of VALUE,an error is generated. Only commonvariables
can be accessed.

Values Returned:

1 Success
-22 Variable not found
-23 Data type mismatch
-24 Variable forced

For example:

VARIABLE_NAME$ = “SET_POINTS(17)”
VALUE = 12.345

STATUS% = WRITEVAR%(VARIABLE_NAME$, VALUE)

4-35

4.6.15

4-36

FINDVAR! Function

Format:

FINDVAR!(varname$)

where:

varname$ is a string expression for the name of the
variableto find.

This function accepts a variable nameasa string expression and
returns a pointerto that variable. This may then be usedin the

SENDL% and RECVL% functions.
@ Booleans
% Integers
! Double integers

$ Strings
No suffix Reals

If specifying an array element, the subscript must be after the data
type characterif there is one.

Values Returned:
>0 Pointer to Variable
-22 Variable not found

For example,to find a pointer to X¥Z%(10):

VARIABLE_NAME$ = “XYZ%(10)”

POINTER! = FINDVAR!(VARIABLE_NAME$)

4.6.16 CONVERT% Function

Format:

CONVERT% (src_variable, src_subscript, destvariable, &
dest_subscript, num_of_words, mode)

where:

src_variable is the variable that selects where to get data
from. This parameter may be a scalar or an
array of any data type.If src_variable is an
array, it should be the base nameand any data
type characteronly.

src_subscript is only used if the src_variableis an array.It
determines wherein the array to begin reading.

If not an array, the value should be 0.

dest_variable is the variable that selects were to move the
data. This parameter may bea scalar or an
array of any data type.If dest_variable is an
array, it should only be the base name and any
data type character.

dest_subscript is only usedif destination_variable is an array.It
determines wherein the array to begin writing.
If not an array, the value should be 0.

num_of_words selects the numberof words to move.

mode determines the modeof operation.

VALUE FUNCTION
0 Move data with no changein format
1 Convert from Motorola Floating Point

to IEEE format

2 Convert from IEEE Floating Point to
Motorola format

4 Word swap (0102H to 0201H)
8 Long word swap (01020304H to

04030201 H)
9 Motorola to IEEE followed by long

word swap
10 Long word swapfollowed by IEEE to

Motorola

All other valuesareillegal

This function is used to convert between data formats used by
AutoMax and data formats used by other computers.

Values Returned:
1 Success

-26 Array is not single dimension
-32 Beyond end of array
-33 Illegal mode value

-34 Zero numberof words
-35 Odd numberof words on long word swap
-36 Number of words > dest data type when dest memory is on

CPU

For example, to move 30 real numbers beginning at SRC_ARRAY(10)
to DST_ARRAY(20) converting from Motorola to IEEE and inverting
the byte order:

STATUS% = CONVERT%(SRC_ARRAY, 10, DST_ARRAY, 20, 60 ,9

4-37

5.0 DIAGNOSTICS AND
TROUBLESHOOTING
Upon power-up, the ENI module will automatically run its on-board

diagnostics. After approximately 10 seconds, the “OK” LED should

turn on. The “OK” LEDwill turn off while theinitialization procedure is
run, and will turn on at its completion. It will also turn off if a STOP

ALL commandis executed, and will remain off until the ENIis
re-initialized.

Software errors are indicated by error codes returned by BASIC
functions. Your application software must checkfor these error
codes.

Hardwareerrors are indicated by the LED onthe faceplate turning
off. Follow the procedures belowin the orderlisted to isolate a
hardware problem. If none of the procedureslisted below isolates the
problem, the module is not user-serviceable.

Step 1. Check the LEDs on the Power Supply module faceplate.

Any problems with the Power Supply module or the rack
can usually be isolated by observing the condition of the

LEDs on the Power Supply module faceplate. Refer to the

AutoMax Power Supply Module and RacksInstruction

Manual (J-3670) for detailed proceduresfor

troubleshooting the Power Supply.

Step 2. Turn off powerto the rack. Check the seating of the ENI.

Use a screwdriver to loosen the screwsthat hold the

modulein the rack. Remove the module from theslotin

the rack, and then reinsert it. Turn on powerto the rack.

Step 3. Check all cable connections of the ENI to the Ethernet
network.

5-1

Appendix A

Technical Specifications

Ambient Conditions

@ Storage temperature: —40°C — 85°C

@ Operating temperature: 5°C — 50°C

@ Humidity: 5-90% non-condensing

Dimensions

@ Height: 11.75 inches

@ Width: 1.25 inches

@ Depth: 7.375 inches

@ Weight: 2 Ibs.

System Power Requirements

@ Input Voltage

® +5 VDC: 5000mA

® +12 VDC: 500mA

® -12 VDC: 100mA

MaximumTransceiver Cable Length

@ 50 meters (164 feet)

A-1

Appendix B

Connecting the ENIto the Transceiver
Ethernet Version 1.0, Version 2.0, and IEEE 802.3 standardsall require different

style transceiver cables. Since cable grounding is done at the ENI end of the
cable, proper matchingis critical.

If you wish to fabricate your own cable, you can do so following the directions
below.

WARNING

THE FOLLOWING INSTRUCTIONS ARE INTENDED ONLY TO ALLOW
FABRICATION OF PROPER CONNECTIONS BETWEENRELIANCE EQUIPMENT
AND USER-PROVIDED DEVICES. THE USER MUST READ AND UNDERSTAND
ALL APPLICABLE INSTRUCTION MANUALS PRIOR TO FABRICATING THE
CABLE. FAILURE TO OBSERVE THIS PRECAUTION COULD RESULT IN BODILY
HARM.

1. Cut suitable length of Ethernet/IEEE 802.3 Transceiver cable. Maximum

cable length is 50 meters (164 feet).

2. Follow the connector manufacturer’s instructions to make cable connections

using the figure below.

3. Check for grounds, shorts, and continuity using an Ohm meter.

ENI end
Pin Number Signal Name

1 Shield (Ethernet 1.0, 2.0) (Ground)

2 Collision Presence +

3 Transmit +

4 Ground

5 Receive +

6 PowerReturn (Ground)

7 Reserved

8 Ground

9 Collision Presence —

10 Transmit —

11 Reserved

12 Receive —

13 Power (+12VDC Fused)

14 Ground

15 Reserved
Figure B-1 - Transceiver Cable Pin Connections

B-1

Appendix C

Error Code Summary
Codesfor Errors found by ENI

-1 ENI failed self test
-2 ENInotinitialized

-3 Did not create socket
-4 Did not bind socket
—5 Did not set option
-6 Did not get option
-7 Did not accept
-8 Buserror
-9 No buffer space

Codesfor errors found by AutoMax

—10 Error locating interrupts
-11 Bad slot number
—12 Bad Internet address
-13 Total numberof sockets >64
—14 Bad socket type
-15 Bad socket number

-16 NotaTCP socket
-—17 Message too long
-18 Zero length for non-array
—19 Illegal pointer
-20 Bad option number
-21 Bad option value
—22 Variable not found
—23 Data Type Mismatch
—24 Variable Forced
—25 Nota double integer array
—26 Notasingle dimension array

-27 Bad array format
-28 Socket closed by destination
—29 Max size of strings

are not equal
-30 Odd numberof bytes

in list parameter
-31 Max size of string

< recvsize of string
-32 Beyond end of array
—33 Illegal mode value
—34 Zero number of words
-—35 Odd numberof words on long

word swap
—36 Numberof words > dest data

type when dest is on CPU
—37 Pointing to on-board memory

Returned by

ENI_INIT
SOCKET, BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT
SHUTDOWN
SOCKET
BIND
SETSOCKOPT
GETSOCKOPT
ACCEPT
ENI_INIT
SOCKET, BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT

ENI_INIT
ENI_INIT, SOCKET
ENI_INIT, CONNECT
ENI_INIT
SOCKET
BIND, CONNECT, ACCEPT
SEND, SENDL, RECV, RECVL
SETSOCKOPT, GETSOCKOPT
SHUTDOWN
ACCEPT
SEND, SENDL, RECV, RECVL
SEND, SENDL, RECV, RECVL
SENDL, RECVL
SETSOCKOPT, GETSOCKOPT
SETSOCKOPT
READVAR, WRITEVAR, FINDVAR
READVAR, WRITEVAR
WRITEVAR
RECVL, SENDL
SEND, SENDL, RECV, RECVL,
CONVERT
RECVL, SENDL
SHUTDOWN

RECV

SENDL, RECVL

RECV
CONVERT, SEND, RECV
CONVERT
CONVERT
CONVERT

CONVERT

RECVL

Warning Status Codes(from ENI — notcritical)

—101 No Message Waiting
-102 Socket Not Connected

RECV, RECVL
CONNECT, SEND, SENDL, RECV,
RECVL

C-1

Appendix D

Glossary

connection

The path between two protocol modules.In Internet, a connection extends
from a TCP module on one machine to a TCP module on another.

CSMA/CD

Carrier Sense Multiple Access with Collision Detection. A characteristic of

network hardwarethat allows stations to contend for access to a
transmission medium bylistening to seeifit is idle.

Ethernet

The namegiven to a popular local area packet-switched network
technology invented by Xerox PARCin the early 1970s.

port

The abstraction that transport protocols use to distinguish among multiple

destinations within a given host computer.Internet protocols identify ports

using small positive integers. Usually, the operating system allows an
application program to specify which port it wants to use.

protocol

A formal description of message formats and the rules two or more
machines must follow to exchange those messages.

Raw Ethernet

A transmission protocol that allows a messageto be broadcastonly, using
the Ethernet address. There is no acknowledgment of the message being
received. Cyclical Redundancy Check (CRC)is used for transmission error
detection.

socket

The abstraction provided by Berkeley 4.3 BSD UNIXthat allows a process
to accessthe Internet. A process opensa socket, specifies the service
desired, binds the socket to a specific destination, and then sendsor

receives data.

TCP

Transmission Control Protocol. TCP allows you to send a messageto a
specific internet address and socket. There is an acknowledgment sent
back to the source that the message was received. Cyclical Redundancy
Check (CRC) is used for transmission error detection.

TCP/IP

(Transmission Control Protocol/Internet Protocol) The Internet standard
transport level protocolthat providesthe reliable, full duplex, stream service
on which many application protocols depend.It allows a process on one

machineto send a stream of data to a process on another.It is
connection-oriented in that before transmitting data, a connection must be
established. Software implementing TCP usually resides in the operating
system and usesIP protocolto transmit information acrosstheInternet.

D-1

D-2

Appendix D

Glossary (Continued)

transceiver

A device that connects a hostinterface to a local area network(e.g.,
Ethernet).

UDP

User Datagram Protocol. The Internet standard protocolthat allows an
application program on one machine send a messageto an application
program on another machine. UDP messagesinclude a protocol port
number, allowing the senderto distinguish among multiple destinations on
the remote machine.It also includes a checksum overthe data being sent.

R
E
1
8
5
7
L
C

Pr
in

te
d

in
U.

S.
A.

RELIANCE CONTROLS
DOCUMENTATION IMPROVEMENT FORM

Document Number:

Page Number(s):

Comments: (Please give chapters, page numbers or specific paragraphs that the change will affect. Include markeups from

the documentor attach additional pages if necessary.)

Whatwill this improvement suggestion provide?

Originator: City: State: ZIP:

Company: Phone: ()

Address: Date:

Technical Writing Internal Use:

Writer:

Follow-Up Action:

Date:

Thank you foryour comments...

PEtANCer
ELECTRICS!

For additional information

1 Allen-Bradley Drive

Mayfield Heights, Ohio 44124 USA
Tel: (800) 241-2886 or (440) 646-3599
http://www. reliance.com/automax

www.rockwellautomation.com

Corporate Headquarters
Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200,Fax: (1) 414.212.5201

for All ¥ Products, Products and Global Manufacturing Solutions
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA,Tel: (1) 414.382.2000,Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax (32) 2 663 0640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong,Tel: {852} 2887 4788,Fax: (852) 2508 1846

Heaxiquarters for Dodge and Reliance Electric Products
Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800,Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, Brilhistra&e 22, D-74834Elztal-Dallau, Germany, Tel: (49} 6261 9410, Fax: (49) 6261 17741
Asia Pacific: Rockwell Automation, 55 Newton Road, #11-011/02 Revenue House, Singapore 307987,Tel: (65) 6356-9077, Fax (65) 6356-9011

Publication J-3696-2 - February 1995 Copyright © 2002 Rockwell Automation, Inc.All rights reserved. Printed in U.S.A.

